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The aim of the course is to give an overview of the classification of smooth
projective surfaces over k = C. (We also occasionally discuss non-algebraic
surfaces.) The emphasis is on understanding the key examples (including
rational and ruled surfaces, K3 surfaces, elliptic surfaces, and surfaces of
general type).
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1 Topology

Here we describe the topology of compact complex surfaces.
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1.1 Homology and cohomology

We recall the construction of the homology groups of a topological space
(see [Hatcher, Sec. 2.1, p. 102] for more details). Let X be a topological
space. Suppose given a triangulation of X, that is, a simplicial complex Σ
and a homeomorphism |Σ| ' X. The group of i-chains Ci(X,Z) is the free
abelian group generated by oriented i-simplices of Σ, modulo the following
relations: for σ an oriented simplex we identify −σ and σ with its orientation
reversed. The boundary map d : Ci(X,Z)→ Ci−1(X,Z) is given by σ 7→ ∂σ,
that is, a oriented simplex σ maps to its boundary ∂σ (the sum of its faces
with the induced orientation). One checks that d2 = 0. The i-th (integral)
homology group of X is

Hi(X,Z) =
ker(d : Ci(X,Z)→ Ci−1(X,Z))
Im(d : Ci+1(X,Z)→ Ci(X,Z))

.

A chain with no boundary is called a cycle. So Hi(X,Z) is the group of
cycles modulo boundaries in dimension i. The group of i-cochains Ci(X,Z)
is the dual Hom(Ci(X,Z),Z) of Ci(X,Z). The boundary map d : Ci → Ci−1

induces the coboundary map Ci−1 → Ci which we also denote by d. The ith
(integral) cohomology group of X is

H i(X,Z) =
ker(d : Ci(X,Z)→ Ci+1(X,Z))
Im(d : Ci−1(X,Z)→ Ci(X,Z))

.

(Note: there is a more geometric interpretation of the real cohomology
groups in terms of smooth differential forms on X (the de Rham approach)
which we discuss in Sec. 1.7.)

The homology and cohomology groups of X do not depend on the choice
of triangulation. In fact, one can define singular homology and cohomology
groups intrinsically (without choosing a triangulation) and show that they
are isomorphic to the simplicial homology and cohomology groups described
above. Here we define the singular homology and cohomology groups as
follows: let Csing

i (X,Z) denote the free abelian group generated by all con-
tinuous maps σ : ∆i → X, where ∆i is the standard i-simplex, and proceed
as above to obtain Hsing

i (X,Z) and H i
sing(X,Z).

There is an intersection product (or cap product) on the homology of
an oriented smooth manifold defined as follows (see [GH, p. 49–53]). Let X
be an oriented smooth manifold of real dimension d. Let α ∈ Hk(X,Z) and
β ∈ Hd−k(X,Z) be two homology classes. We can find piecewise smooth
cycles A and B representing α and β which intersect transversely. For
each point P ∈ A ∩ B, we define the intersection index iP (A,B) = ±1 as
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follows. Let v1, . . . , vk and w1, . . . , wd−k be oriented bases of the tangent
spaces TPA and TPB. Then iP (A,B) = 1 if v1, . . . , vk, w1, . . . , wd−k is a
positively oriented basis of TPX and iP (A,B) = −1 otherwise. We define
the intersection number

A ·B :=
∑

P∈A∩B

iP (A,B).

One shows that A ·B is independent of the choice of representatives A,B of
α, β. (Convince yourself that this is true for 1-cycles on the real 2-torus.)
So, we obtain a bilinear form

∩ : Hk(X,Z)×Hd−k(X,Z)→ Z, ([A], [B]) 7→ A ·B,

the intersection or cap product. Note that α ∩ β = (−1)k(d−k)β ∩ α.

Remark 1.1. One can also define an intersection product

∩ : Hi(X,Z)×Hj(X,Z)→ Hi+j−d(X,Z),

but we will not need this.

1.2 Curves

We review the topological classification of complex curves. Let X be a
smooth complex projective curve (or, equivalently, a compact Riemann sur-
face). Then X is a compact oriented smooth manifold of (real) dimension 2
together with a complex structure. As a smooth manifold, X is diffeomor-
phic to a sphere with g handles, where g is the genus of X (the number of
holes). In particular, there is a unique topological invariant, the genus g.

Remark 1.2. The moduli space Mg of curves of genus g is a space whose
points correspond to isomorphism types of complex projective curves of
genus g. For g ≥ 2 it is an (irreducible) quasiprojective variety of dimen-
sion 3g − 3 with quotient singularities. The space Mg can be understood
as the space of complex structures on the smooth surface of genus g (the
Teichmüller approach).

We describe the integral homology of X. We have H0(X,Z) = Z and
H2(X,Z) = Z. (More generally, recall that if X is a connected topological
space then H0(X,Z) = Z, generated by the class of a point, and if X is an
oriented smooth manifold of dimension d then Hd(X,Z) = Z, generated by
the so called fundamental class of X.) The first homology group H1(X,Z)
is isomorphic to Z2g, generated by the 1-cycles a1, b1, . . . , ag, bg, where ai,
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bi encircle the ith hole in two independent ways and meet transversely in
a single point, and are disjoint from aj , bj for j 6= i. In particular the
intersection product

∩ : H1(X,Z)×H1(X,Z)→ Z

is the skew bilinear form with matrix
0 1
−1 0

. . . . . .
0 1
−1 0


with respect to the basis a1, b1, . . . , ag, bg (for an appropriate choice of ori-
entations of the ai, bi).

We describe the fundamental group of X (see [Fulton, p. 242]). Recall
that the smooth manifold X can be obtained from a 4g-gon as follows. Go-
ing anticlockwise around the boundary of the 4g-gon, we label the edges
a1, b1, a

−1
1 , b−1

1 , . . . , ag, bg, a
−1
g , b−1

g , and then glue the edges in pairs accord-
ing to the labels (here a−1 corresponds to a with the orientation reversed).
All the vertices of the polygon are identified to a single point x ∈ X and the
edges of the polygon become loops a1, b1, . . . , ag, bg based at x ∈ X. Using
the van Kampen theorem, one deduces that

π1(X,x) =
〈a1, b1, . . . , ag, bg〉
([a1, b1] · · · [ag, bg])

,

where [a, b] = aba−1b−1 denotes the commutator of a and b. That is,
π1(X,x) is the free group generated by a1, b1, . . . , ag, bg modulo the single
relation given by the product of the commutators of ai, bi.

If X is a connected topological space then the abelianisation π1(X,x)ab

of the fundamental group π(X,x) is identified with the first homology group
H1(X,Z) ([Hatcher, p. 166, Thm. 2.A.1]). (The abelianisation Gab of a
group G is the largest abelian quotient of G. Explicitly, it is the quotient
of G by the normal subgroup generated by all commutators.) This gives
another way to compute H1(X,Z).

1.3 Poincaré duality and the universal coefficient theorem

Theorem 1.3. (Poincaré duality I) [GH, p. 53] Let X be a compact oriented
smooth manifold of dimension d. Then the intersection product

∩ : Hi(X,Z)×Hd−i(X,Z)→ Z
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is unimodular, that is, the induced map

Hi(X,Z)/Tors→ Hd−i(X,Z)∗ α 7→ (α ∩ ·)

is an isomorphism.

Recall that, if L,M are abelian groups and

b : L×M → Z

is a bilinear pairing, we say b is unimodular if the induced map

L/Tors→M∗ := Hom(M,Z), l 7→ b(l, ·)

is an isomorphism. Equivalently, if we pick bases for L/Tors and M/Tors,
the matrix of b with respect to these bases has determinant ±1.

Theorem 1.4. (Universal coefficient theorem)[Hatcher, p. 195, Thm. 3.2]
Let X be a topological space. Then there are natural exact sequences

0→ Ext1(Hi−1(X,Z),Z)→ H i(X,Z)→ Hi(X,Z)∗ → 0.

In particular
H i(X,Z)/Tors ' Hi(X,Z)∗

and
TorsH i ' TorsHi−1

(this last isomorphism is not canonical).

Note: If you do not know what Ext1 is, you can ignore the first statement
in the theorem.

Proof. (Sketch) Recall that the homology Hi(X,Z) is the homology of the
complex of chains

· · · → Ci+1 → Ci → Ci−1 → · · ·

for some triangulation ofX, and the cohomologyH i(X,Z) is the cohomology
of the dual complex

· · · ← C∗i+1 ← C∗i ← C∗i−1 ← · · ·

Observe that there is a natural map H i(X,Z) → Hi(X,Z)∗. Recall that
each Ci is a free abelian group (generated by the simplices of dimension
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i). One shows that the complex (C·, d) splits as a direct sum of shifts of
complexes of the following types:

0→ Z→ 0

0→ Z→ Z→ 0, 1 7→ n

Dualising these complexes, we deduce that H i(X,Z)/Tors ' Hi(X,Z)∗ and
TorsH i(X,Z) ' TorsHi−1(X,Z). The exact sequence in the statement is
obtained by being careful about naturality.

We can now give a slightly stronger form of Poincaré duality.

Theorem 1.5. (Poincaré duality II) [GH, p. 53] Notation as in 1.3. There
is a natural isomorphism

Hi(X,Z) ' Hd−i(X,Z)

which induces the isomorphism Hi(X,Z)/Tors ' Hd−i(X,Z)∗ given by the
intersection product. In particular, TorsHi(X,Z) ' TorsHd−i(X,Z).

Proof of 1.3, 1.5. (Sketch) Fix a triangulation X ' |Σ|. Consider the dual
complex Σ′ of Σ. This is a cell complex (not necessarily a simplicial com-
plex) with support |Σ′| = |Σ|, and cells of dimension d− i in bijection with
simplices of Σ of dimension i. It is constructed as follows: consider the
barycentric subdivision Σ̂ of |Σ|. For v ∈ Σ a vertex, the corresponding
d-cell v′ ∈ Σ′ is the union of all the simplices in Σ̂ which contain v. For
σ ∈ Σ an i-simplex, the corresponding (d− i)-cell σ′ ∈ Σ′ is the intersection
of the d-cells v′ corresponding to the vertices v of σ. (Please draw a picture
for d = 2). We observe that, for an i-simplex σ ∈ Σ, the corresponding
cell σ′ ∈ Σ′ is the unique (d − i)-cell of Σ′ meeting σ, and intersects it
transversely in one point. Now let (C·(Σ,Z), d) be the chain complex for
the triangulation X ' |Σ| and (C·(Σ′,Z), d) the chain complex for the cel-
lular subdivision X ' |Σ′|. (Note that we can use cellular subdivisions to
compute homology exactly as for triangulations.) One shows that the maps

Ci(Σ,Z) ∼−→ Cd−i(Σ′,Z) = Cd−i(Σ′,Z)∗, σ 7→ (σ′)∗.

commute (up to sign) with the differentials d. Here Cj(Σ′,Z) is the free
abelian group with basis given by the j-cells τ of Σ′ and for such a τ we
write τ∗ for the corresponding element of the dual basis of Cj(Σ′,Z) =
Cj(Σ′,Z)∗. Passing to homology we obtain the isomorphism Hi(X,Z) '
Hd−i(X,Z).
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1.4 Topological invariants of surfaces

Let X be a compact oriented smooth 4-manifold. Then H0(X,Z) = Z,
H4(X,Z) = Z, and H1(X,Z) = π1(X,x)ab. The intersection form

Q := ∩ : H2(X,Z)/Tors×H2(X,Z)/Tors→ Z

is symmetric and unimodular. We also have TorsH2 ' TorsH1, TorsH3 =
0, and H3(X,Z) ' H1(X,Z)∗ by Poincaré duality and the universal coeffi-
cient theorem.

So, to recap, the topological invariants are the fundamental group π1(X,x)
and the intersection form Q on H2(X,Z)/Tors.

Remark 1.6. Assume X is a smooth projective complex surface. We can
usually reduce to the simply connected case (π1(X,x) = 0) as follows. If
π1(X,x) is finite, let p : X̃ → X be the universal cover ofX. Then X̃ inherits
the structure of a smooth complex surface from X, and X̃ is projective
because p is a finite morphism. So X is the quotient of the smooth projective
surface X̃ by the free action of the finite group π1(X,x). If H1(X,Z) =
π1(X,x)ab is infinite, then the Albanese morphism is a non-trivial morphism
from X to a complex torus, and we can use this to study X. See Sec. 11.2.

1.5 Results of Freedman and Donaldson

We state without proof two results about the classification of smooth 4
manifolds. See [BHPV, Ch. IX] for more details (note: unfortunately, this
material is only contained in the 2nd edition).

Theorem 1.7. (Freedman ’82) A simply connected compact oriented 4-
manifold is determined up to (oriented) homeomorphism by its intersection
form Q.

Theorem 1.8. (Donaldson ’83) There exist infinitely many smooth complex
projective surfaces which are homeomorphic but not diffeomorphic.

1.6 Classification of quadratic forms

Let L be a free abelian group of finite rank. Let Q : L × L → Z be a
nondegenerate symmetric bilinear form.

We can pick a basis of the R-vector space V = L ⊗Z R such that the
matrix of Q with respect to this basis is diagonal with diagonal entries n+

1’s and n− (-1)’s. The pair (n+, n−) is the signature of Q.
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We say Q is positive definite if Q(x, x) > 0 for all x 6= 0, negative
definite if Q(x, x) < 0 for all x 6= 0, and indefinite otherwise. In terms of
the signature, Q is positive definite if n− = 0, negative definite if n+ = 0,
and indefinite otherwise.

We say Q is even if Q(x, x) is even for all x ∈ L, and Q is odd otherwise.

Theorem 1.9. [Serre70, Ch. V] An indefinite unimodular quadratic form is
determined up to isomorphism by its signature and parity. (The same holds
for definite forms if the rank is ≤ 8).

The quadratic forms as in the theorem can be described explicitly as
follows. If Q is odd, Q is of type

(1)n+ ⊕ (−1)n− .

(That is, with respect to some basis of L, the quadratic form Q has matrix
the diagonal matrix with diagonal entries n+ 1’s and n− (−1)’s.) If Q is
even, Q is of type

Ha ⊕ (±E8)b

for some a > 0 and b ≥ 0, where H is the hyperbolic plane with matrix(
0 1
1 0

)
,

and E8 is the positive definite quadratic form of rank 8 with matrix



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


.

Remark 1.10. The classification of definite quadratic forms is much more
involved. However, if X is a smooth projective complex surface with definite
quadratic form Q, then H2(X,Z) has rank 1 and Q = (1).

Remark 1.11. A free abelian group L together with a symmetric bilinear
form Q : L× L→ Z is sometimes called a lattice.
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Example 1.12. Let π : X → P2 be the blowup of n distinct points P1, . . . , Pn

in the complex projective plane P2. LetH ⊂ P2 be a hyperplane not contain-
ing any of the Pi and E1,. . . , En the exceptional curves. Then H2(X,Z) is
free with basis π−1H,E1, . . . , En, and the intersection product Q has matrix
(1)⊕ (−1)n with respect to this basis,

Example 1.13. Let X be a K3 surface (that is, a compact complex surface
X such that the canonical divisor KX is trivial and H1(X,Z) = 0) Then
H2(X,Z) is free of rank 22 and the intersection formQ has typeH3⊕(−E8)2.

1.7 de Rham cohomology

Here we describe the de Rham approach to cohomology via differential forms.
We first note some elementary facts about homology and cohomology

groups. Let X be a topological space. Then we can define (simplicial)
homology and cohomology groupsHi(X,A), H i(X,A) with coefficients in an
abelian group A as before. If F is a field of characteristic 0 (for example Q, R,
C) then Hi(X,F) = Hi(X,Z)⊗ZF. Recall that H i(X,Z)/Tors = Hi(X,Z)∗.
If F is a field then H i(X,F) = Hi(X,F)∗.

Now let X be a compact smooth manifold of (real) dimension d. Let
Ck

dR(X,R) denote the R-vector space of smooth R-valued k-forms ω on X.
That is, locally on X,

ω =
∑

i1<···<ik

fi1,...,ikdxi1 ∧ · · · dxik =
∑
|I|=k

fIdxI

where x1, . . . , xd are local coordinates on X and the fI are smooth R-valued
functions on X. Let

d : Ck
dR(X,R)→ Ck+1

dR (X,R)

be the exterior derivative, that is (working locally),

dω = d(
∑

fIdxI) =
∑

dfI ∧ dxI

where

df =
d∑

i=1

∂f

∂xi
dxi

Then d2 = 0, and we define the (real) de Rham cohomology groups H i
dR(X,R)

by

H i
dR(X,R) =

ker(d : Ci(X,R)→ Ci+1(X,R))
Im(d : Ci−1(X,R)→ Ci(X,R))

.
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We say a smooth differential form ω is closed if dω = 0, and we say ω is
exact if ω = dη for some η. So, H i

dR(X,R) is the R-vector space of closed
i-forms modulo exact forms.

There is a natural R-bilinear pairing

H i
dR(X,R)×Hi(X,R)→ R, (ω, γ) 7→

∫
γ
ω. (1)

Note that this is well defined by Stokes’ theorem: if ω = dη then
∫
γ dη =∫

dγ ω = 0 because dγ = 0, and if γ = dβ then
∫
dβ ω =

∫
β dω = 0 because

dω = 0.

Theorem 1.14. (de Rham’s theorem) [GH, p. 44] The map

H i
dR(X,R)→ Hi(X,R)∗ = H i(X,R)

induced by (1) is an isomorphism.

The wedge product or exterior product on de Rham cohomology is the
product

H i
dR(X,R)×Hj

dR(X,R)→ H i+j
dR (X,R), (ω, η) 7→ ω ∧ η

induced by wedge product of forms. Note that this is well defined because

d(ω ∧ ξ) = dω ∧ ξ + (−1)deg ωω ∧ dξ

so, if ω is closed and η = dξ is exact, then

ω ∧ dξ = (−1)deg ωd(ω ∧ ξ)

is exact.
Now we discuss Poincaré duality from the de Rham point of view. Recall

that the intersection product defines a non-degenerate bilinear form

∩ : Hi(X,R)×Hd−i(X,R)→ R.

Consider the identification

Hi(X,R) ∼−→ Hd−i(X,R)∗ = Hd−i(X,R) = Hd−i
dR (X,R)

induced by ∩ and the de Rham isomorphism. Here an i-cycle α maps to a
(d−i) form ω (determined up to an exact form) such that for any (d−i)-cycle
β ∈ Hd−i(X,R),

α ∩ β =
∫

β
ω.
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We identify the form ω explicitly. Assume for simplicity that the homol-
ogy class α is represented by a smooth submanifold A ⊂ X of dimension
i. There exists a “tubular neighbourhood” N of A in X isomorphic to a
neighbourhood of the zero section in a vector bundle over A (the normal
bundle of A in X). We construct a form ω such that the support of ω is
contained in N , ω is closed, and

∫
Na
ω = 1 for all a ∈ A, where Na de-

notes the fibre of the bundle N → A over a. Explicitly, locally on X write
A = (x1 = · · · = xd−i = 0) ⊂ X, where x1, . . . , xd are local coordinates on
X, and let ω = fdx1 ∧ · · · ∧ dxd−i where f = f(x1, . . . , xd−i) is a smooth
bump function on Rd−i supported in a small neighbourhood of the origin,
with integral 1. Globally, we can use a partition of unity to patch the local
forms together. Now suppose that β ∈ Hd−i(X,Z), and represent β by a
piecewise smooth (d− i)-cycle B intersecting A transversely in a finite num-
ber of points. Then

∫
B ω = A ∩B — at each intersection point, we get the

integral of the bump function f (which equals 1 by construction), with a
sign given by the orientations.

We show that the pairing

∧ : H i
dR(X,R)×Hd−i

dR (X,R)→ R, (ω, η) 7→
∫

X
ω ∧ η

given by the wedge product is identified with the pairing

∩ : Hd−i(X,R)×Hi(X,R)→ R

given by the intersection product via the isomorphisms

Hi(X,R) ' Hd−i
dR (X,R), Hd−i(X,R) ' H i

dR(X,R)

described above. In particular, the wedge pairing is nondegenerate. Assume
for simplicity that α ∈ Hi(X,R), β ∈ Hd−i(X,R) are represented by closed
submanifolds A,B ⊂ X of dimensions i, d − i. Let ω, η be representatives
of the corresponding deRham cohomology classes which are supported in a
small tubular neighbourhood of A,B. We may assume that A,B intersect
transversely in a finite number of points. Let P be an intersection point of
A,B, then we can choose local coordinates x1, . . . , xd at P such that

A = (x1 = · · · = xd−i = 0) ⊂ X, B = (xd−i+1 = · · · = xd = 0) ⊂ X.

As above we may assume that, working locally at P ∈ X,

ω = f(x1, . . . , xd−i)dx1∧· · ·∧dxd−i, η = g(xd−i+1, . . . , xd)dxd−i+1∧· · ·∧dxd,
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where f, g are bump functions at 0 ∈ Rd−i and 0 ∈ Ri with integral 1. We
find that the contribution to

∫
X ω ∧ η from this chart is iP (A,B) = ±1, the

intersection number of A,B at P (where the sign comes from the orientations
— see the description of the intersection product). Adding together the local
contributions we deduce

∫
X ω ∧ η = α ∩ β, as required. (See [GH, p. 58–59]

for an alternative argument.)

Remark 1.15. The cup product

∪ : H i(X,R)×Hj(X,R)→ H i+j(X,R)

on (simplicial) cohomology corresponds to the wedge product on de Rham
cohomology via the de Rham isomorphism [GH, p. 60]. (The cup product
can be defined as follows: Let 〈v0, . . . , vn〉 denote the simplex with vertices
v0, . . . , vn. For φ ∈ Ci(X,Z), ψ ∈ Cj(X,Z) simplicial cochains, define φ∪ψ ∈
Ci+j(X,Z) by

φ ∪ ψ(〈v0 · · · vi+j〉) = φ(〈v0 · · · vi〉)ψ(〈vi · · · vi+j〉).

This induces a well defined product on cohomology. See [Hatcher, p. 206,
Sec. 3.2] for more details.)

2 Hodge theory

Let X be a complex manifold of complex dimension n. Consider C-valued
k-forms ω on X. That is, locally ω =

∑
|I|=k fIdxI where x1, . . . , x2n are

local real coordinates on X, and fI is a smooth C-valued function on X.
We define the complex de Rham cohomology group Hk

dR(X,C) as the space
of closed C-valued k-forms modulo exact forms (as in the real case). Note
of course that Hk

dR(X,C) = Hk
dR(X,R)⊗R C.

Now let z1, . . . , zn be local complex coordinates on X, and write zi =
xi + iyi for each i = 1, . . . , n. So x1, y1, . . . , xn, yn are local real coordinates
on X. We can write a C-valued k-form in terms of the dzi = dxi + idyi,
dz̄i = dxi− idyi (instead of the dxi, dyi). A (p, q)-form is a C-valued (p+q)-
form which is locally of the form∑

|I|=p,|J |=q

fI,JdzI ∧ dz̄J

for some C-valued functions fI,J on X. Let

Hp,q(X) ⊂ Hp+q
dR (X,C)

13



denote the complex subspace of de Rham cohomology classes represented
by a closed (p, q)-form. Note immediately that Hq,p = H̄p,q, that is, Hq,p ⊂
Hk(X,C) is the complex conjugate of the subspace Hp,q ⊂ Hk(X,C).

Theorem 2.1. (Hodge decomposition) [GH, p. 116] Let X be a smooth
complex projective variety (or, more generally, a compact complex Kähler
manifold). Then

Hk
dR(X,C) =

⊕
p+q=k

Hp,q(X).

Moreover, there is a natural isomorphism Hp,q(X) ' Hq(X,Ωp
X). That

is, Hp,q(X) is isomorphic to the qth cohomology group of the sheaf Ωp
X of

holomorphic p-forms on X.

A holomorphic p-form ω on X is a C-valued form which is locally of
the form ω =

∑
|I|=p fIdzI where z1, . . . , zn are local complex coordinates

on X and fI is a holomorphic C-valued function on X. The sheaf Ωp
X

of holomorphic p-forms is the data of the spaces of holomorphic p-forms
ΩX(U) on U for each open set U ⊂ X together with the restriction maps
Ωp

X(U) → Ωp
X(V ) for V ⊂ U . (We will discuss sheaves and cohomology of

sheaves in more detail in Sec. 3).

Remark 2.2. Recall that the wedge product defines a nondegenerate pairing

Hk
dR(X,C)×H2n−k

dR (X,C)→ Hn(X,R) ' C, (ω, η) 7→
∫

X
ω ∧ η.

By the Hodge decomposition, this pairing decomposes into a direct sum of
nondegenerate pairings

Hp,q ×Hn−p,n−q → Hn,n ' C.

(Note that the wedge product of a (p, q)-form and an (r, s)-form is a (p +
r, q+ s)-form, so can only be non-zero if p+ r, q+ s ≤ n.) In terms of sheaf
cohomology, we have a nondegenerate pairing

Hq(Ωp
X)×Hn−q(Ωn−p

X )→ Hn(Ωn
X) ' C.

We observe that this is an instance of Serre duality [Hartshorne, p. 244,
III.7.7]. Indeed, the pairing of sheaves

∧ : Ωp
X × Ωn−p

X → Ωn
X =: ωX

determines an identification

Ωn−p
X = HomOX

(Ωp
X , ωX) = HomOX

(Ωp
X ,OX)⊗ ωX = (Ωp

X)∨ ⊗ ωX .

14



So the pairing above can be rewritten as

Hq(Ωp
X)×Hn−q((Ωp

X)∨ ⊗ ωX)→ Hn(ωX) ' C.

This is the Serre duality pairing for the sheaf Ωp
X .

We define some notation. Let bi(X) = dimRH
i(X,R) = dimCH

i(X,C),
the ith Betti number, and hp,q(X) = dimCH

p,q(X), the Hodge numbers.
For F a coherent sheaf on X (for example, OX , Ωp

X), let hi(X,F) =
dimCH

i(X,F).
Now let X be a smooth complex projective surface. Then

H1(X,C) = H1,0 ⊕H0,1 = H0(ΩX)⊕H1(OX)

H2(X,C) = H2,0 ⊕H1,1 ⊕H0,2 = H0(ωX)⊕H1(ΩX)⊕H2(OX)

The irregularity of X is q := h0(ΩX) = h1(OX). The geometric genus
of X is pg := h0(ωX) = h2(OX). We have

b1 = b3 = 2q, b2 = 2pg + h1,1

by the Hodge decomposition and Poincaré duality.

3 Sheaves and cohomology

Here we give a quick introduction to sheaves and their cohomology. For
more details, see [GH, p. 34–43].

3.1 Sheaves

Let X be a topological space. A sheaf F on X is the following data:

(1) For every open set U ⊂ X, an abelian group F(U), the sections of F
over U , and

(2) for every inclusion of open sets V ⊂ U a homomorphism ρUV : F(U)→
F(V ), the restriction map,

such that

(1) ρV W ◦ ρUV = ρUW .
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(2) For U ⊂ X open and U =
⋃

i∈I Ui an open covering of U , the sequence

0 → F(U) →
⊕

i∈I F(Ui) →
⊕

i6=j∈I F(Ui ∩ Uj)

s 7→ (s|Ui)

(si) 7→ (si|Uij − sj |Uij )

is exact.

Here for s ∈ F(U) and V ⊂ U we write s|V for ρUV (s). We also sometimes
write Γ(U,F) for F(U).

Example 3.1. (1) If X is a complex manifold or smooth algebraic variety
of dimension n, the holomorphic or regular functions on X form a
sheaf OX , the structure sheaf, and the holomorphic or regular p-forms
form a sheaf Ωp

X for 0 ≤ p ≤ n (by convention Ω0
X = OX). We write

ωX = Ωn
X .

(2) Similarly, if X is a smooth manifold of dimension n, the smooth func-
tions form a sheaf AX , and the smooth p-forms form a sheaf Ap

X ,
0 ≤ p ≤ n. Note: The use of these sheaves is not essential in the the-
ory of smooth manifolds, because we can always globalise local data
using smooth bump functions. They are however sometimes used in
an auxiliary role (e.g., proof of de Rham theorem [GH, p. 43–44]).

(3) If X is a topological space and A is an abelian group (for example,
A = Z), the locally constant A-valued functions on X form a sheaf A,
the constant sheaf with stalk A.

A morphism of sheaves α : F → G is a homomorphism αU : F(U) →
G(U) for each open U ⊂ X, compatible with the restriction maps. The kernel
of α is the subsheaf kerα of F defined by (kerα)(U) = kerαU . The image
of α is the subsheaf Imα of G defined as follows: s ∈ G(U) lies in (Imα)(U)
if there exists a open covering U =

⋃
Ui of U such that s|Ui ∈ ImαUi for

all i. (Note: (Imα)(U) 6= ImαU in general.) The cokernel of α is the sheaf
cokerα defined as follows: an element of (cokerα)(U) is given by an open
covering U =

⋃
Ui of U and sections si ∈ G(Ui) such that

si|Ui∩Uj − sj |Ui∩Uj ∈ ImαUi∩Uj

for all i 6= j. Two such data (si ∈ F(Ui)), (s′j ∈ F(U ′j)) define the same ele-
ment of (cokerα)(U) if for all P ∈ U there exists an an open neighbourhood
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V of P and i, j such that V ⊂ Ui ∩ U ′j and si|V − s′j |V ∈ im(αV ). (Note:
(cokerα)(U) 6= cokerαU in general.)

The stalk of a sheaf F at a point P ∈ X is

FP = lim−→
U3P

F(U),

the direct limit over open neighbourhoods U of P of the abelian groups
F(U). That is, an element of FP is given by a section s ∈ F(U) for some
open neighbourhood U of P , and (s ∈ F(U)), (t ∈ F(V )) define the same
element of FP if there exists an open neighbourhood W of P such that
W ⊂ U ∩ V and s|W = t|W .

Example 3.2. (1) Let X be a complex manifold, P ∈ X a point, and
z1, . . . , zn local complex coordinates at P . Then an element of OX,P

is a power series in z1, . . . , zn with positive radius of convergence.

(2) If X is an algebraic variety then OX,P is the local ring of regular
functions at P .

We say a sequence of sheaves

E α−→ F β−→ G

is exact if the induced sequence of stalks at P is exact for all P ∈ X.
Equivalently, imα = kerβ (where imα and kerβ are the subsheaves of F
defined above).

Example 3.3. Let X be a complex manifold. The exponential sequence is
the exact sequence of sheaves

0 → Z → OX → O×X → 0

f 7→ exp(2πif)

Here Z denotes the constant sheaf with stalk Z, and O×X denotes the sheaf
of holomorphic functions on X which are nowhere zero (with group law
pointwise multiplication). Note that OX(U) → O×X(U) is not surjective in
general (for example, if X = U = C \ {0}).

We introduce some more terminology. Let X be a complex manifold or
smooth algebraic variety of dimension n. Then the structure sheaf OX is a
sheaf of rings, that is, each OX(U) is a ring and the restriction maps are
ring homomorphisms. We say a sheaf F on OX is an OX-module if F(U)
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is an OX(U)-module for each U , and this structure is compatible with the
restriction maps. An OX-module F is locally free of rank r if there is an open
covering U = {Ui}i∈I of X such that F|Ui ' O

⊕r
Ui

for each i. For example
Ωp

X is locally free of rank
(
n
p

)
. An OX -module F is coherent if there is an

open covering U = {Ui}i∈I of X and an exact sequence

O⊕mi
Ui
→ O⊕ni

Ui
→ F|Ui → 0

for each i (that is, F is locally a cokernel of a map of free sheaves of finite
rank).

3.2 Cohomology of sheaves

Let F be a sheaf on a topological space X, and U = {Ui}i∈I a finite open
covering of X. We write Ui0···ip = Ui0 ∩ · · · ∩ Uip . Define

Cp(U ,F) =
⊕

i0<···<ip

F(Ui0···ip)

and

d : Cp(U ,F)→ Cp+1(U ,F), (ds)i0···ip+1 =
p+1∑
j=0

(−1)jsi0···îj ···ip+1
|Ui0···ip+1

.

One checks that d2 = 0. We define the Cech cohomology Hp(U ,F) of
F relative to the open covering U to be the cohomology of the complex
(C ·(U ,F), d), that is

Hp(U ,F) =
ker(d : Cp(U ,F)→ Cp+1(U ,F))
Im(d : Cp−1(U ,F)→ Cp(U ,F))

Note immediately that H0(U ,F) = F(X) by the sheaf axioms.
Now let V = {Vj}j∈J be a refinement of the open covering U . That is,

for all j ∈ J there exists i ∈ I such that Vj ⊂ Ui. Fix a map φ : J → I such
that Vj ⊂ Uφ(j) for all j. Then φ induces maps

ρφ : Cp(U ,F)→ Cp(V,F) (ρφs)j0···jp = sφ(j0)···φ(jp)|Vj0···jp

which are compatible with the differentials d, and so induce maps

ρφ : Hp(U ,F)→ Hp(V,F)
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on cohomology. One shows that the maps ρφ on cohomology do not depend
on the choice of φ (because the maps ρφ on complexes for different choices
of φ are chain homotopic). We define the Cech cohomology Hp(X,F) of F
by

Hp(X,F) = lim−→
U
Hp(U ,F),

the direct limit over open coverings U of X of the Hq(U ,F).

Example 3.4. Let X be a topological space. Then Hp(X,Z) ' Hp(X,Z),
that is, the Cech cohomology of the constant sheaf with stalk Z is isomorphic
to the (simplicial) integral cohomology of X. To see this, let X ' |Σ| be
a triangulation, with vertices {vi}i∈I . Let Ui = Star(vi), the union of the
interiors of simplices containing vi. Then U = {Ui}i∈I is an open covering of
X, and Ui0···ip is non-empty iff 〈vi0 · · · vip〉 is a simplex of Σ and is connected
when nonempty. We obtain an isomorphism

Cp(U ,Z) ∼−→ Cp(X,Z) = Cp(X,Z)∗ s = (si0···ip) 7→ (〈vi0 · · · vip〉 7→ si0···ip)

which is compatible with the differentials, and so an isomorphism

Hp(U ,Z) ∼−→ Hp(X,Z).

We can make the open covering U arbitrarily fine by subdividing Σ. So,
passing to the limit over all coverings, we deduce

Hp(X,Z) ∼−→ Hp(X,Z)

as claimed.

Cech cohomology groups can be computing using the following theorem.

Theorem 3.5. (Leray theorem) Let X be a topological space, F a sheaf on
X, and U = {Ui}i∈I an open covering of X such that

Hq(Ui0···ip ,F) = 0 for all q > 0 and i0, . . . ip. (2)

Then Hp(X,F) = Hp(U ,F).

Example 3.6. The hypothesis (2) is satisfied in the following cases:

(1) X an algebraic variety, F a coherent sheaf, and U an open covering of
X by affine open sets.

(2) X a complex manifold of dimension n, F a coherent sheaf, and U
a covering of X by polydiscs (that is, open sets of the form ∆n for
∆ = (|z| < r) ⊂ C, some r > 0).
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(3) X a topological space, F = A a constant sheaf, and U = {Ui}i∈I an
open covering of X such that Ui0···ip is contractible for all i0, . . . , ip (cf.
Ex. 3.4).

Here is one of the main applications of sheaf cohomology. Let

0→ E → F → G → 0

be an exact sequence of sheaves. Then there is an associated long exact
sequence of cohomology

0 → H0(X, E) → H0(X,F) → H0(X,G)
δ→ H1(X, E) → H1(X,F) → H1(X,G)
δ→ H2(X, E) → · · ·

To see this, assume for simplicity that there exist arbitrarily fine open cov-
erings U = {Ui}i∈I of X such that the sequence

0→ E(Ui0···ip)→ F(Ui0···ip)→ G(Ui0···ip)→ 0

is exact for all i0, . . . , ip. (This is always satisfied in practice.) Then we have
an exact sequence of complexes

0→ C ·(U , E)→ C ·(U ,F)→ C ·(U ,G)→ 0

which (as usual, see [Hatcher, p. 116-7]) induces a long exact sequence of
cohomology

· · · → H i(U , E)→ H i(U ,F)→ H i(U ,G) δ→ H i+1(U , E)→ · · ·

Taking the limit over open coverings U gives the result.
In particular, given a short exact sequence of sheaves

0→ E → F → G → 0,

we have an exact sequence of abelian groups

0→ E(X)→ F(X)→ G(X) δ→ H1(X, E)

So, a section t ∈ G(X) is the image of a section s ∈ F(X) iff δ(t) = 0 in
H1(X, E).
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3.3 Analytic and algebraic approaches

If X is a smooth complex variety then there is an associated complex man-
ifold, denoted Xan. Note that the topology on X is the Zariski topology
(the open sets are complements of finite unions of closed subvarieties) and
the topology on Xan is the usual Euclidean topology.

We state some results from [Serre56]. If F is a coherent sheaf on X there
is an naturally associated coherent sheaf Fan on Xan. Now suppose X is
projective, so Xan is compact. Then, for F a coherent sheaf on X, there are
natural isomorphisms

H i(X,F) ∼→ H i(Xan,Fan)

for each i . In particular, F(X) ' Fan(X). Note that this is not true
in general if Xan is not compact. For example, if X = A1

x and F = OX ,
then Fan = OXan , the sheaf of holomorphic functions on Xan, and exp(x) ∈
OXan(X) \ OX(X).

4 Divisors and Line bundles

Let X be a smooth algebraic variety over k = C.
A divisor on X is a finite formal Z-linear combination of irreducible

codimension one closed subvarieties

D =
∑

niYi, ni ∈ Z

We say D is effective and write D ≥ 0 if ni ≥ 0 for all i. For 0 6= f ∈ k(X)
a nonzero rational function on X, the principal divisor associated to f is

(f) :=
∑
Y⊂X

νY (f) · Y.

Here the sum is over codimension one subvarieties Y ⊂ X and νY (f) is the
order of vanishing of f along Y . That is, locally at a general point P ∈ Y
we can write Y = (g = 0) and f = gνh, where h is regular at P and not
divisible by g, and ν = νY (f) ∈ Z. So, (f) is the divisor of zeroes and poles
of f counted with multiplicities.

A line bundle L over X is a morphism p : L → X with each fibre Lx

a complex vector space of dimension 1, which is locally trivial in the fol-
lowing sense: there exists an open covering U = {Ui}i∈I of X, and local
trivialisations

φi : L|Ui

∼→ Ui × C
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compatible with the vector space structure on the fibres and the projection
maps p,pr1. Then

φj ◦ φ−1
i : Uij × C→ Uij × C, (x, v) 7→ (x, gij(x) · v),

where the transition functions gij : Uij → C× are nowhere zero regular func-
tions, that is, gij ∈ O×X(Uij). The (gij) define a Cech cocycle in C1(U ,O×X).
Indeed, we have gjkgij = gik so (dg)ijk = gjkg

−1
ik gij = 1. If we change the

trivialisations φi by composing with multiplication on fibres by fi ∈ O×X(Ui),
then (gij) is replaced by (fjgijf

−1
i ) = (gijfjf

−1
i ) = g ·df . Let Pic(X) denote

the set of isomorphism classes of line bundles. The set Pic(X) is an abelian
group with group law (fibrewise) tensor product: (L ⊗M)x := Lx ⊗C Mx.
This corresponds to multiplication of transition functions. We deduce that

Pic(X) ' H1(X,O×X).

Let p : L→ X be a line bundle. We can consider the sheaf L of regular
sections of L, that is, for U ⊂ X open,

L(U) = {s | s : U → L|U regular, p ◦ s = idU}.

In terms of local trivialisations,

L(X) = {(si) | si ∈ OX(Ui), sj = gijsj}.

Conversely, given L we can reconstruct p : L→ X.
A rational section s of L is a section over some (Zariski) open subset

U . In terms of local trivialisations, s is given by si ∈ k(X) such that
sj = gijsi, cf. above. For s a nonzero rational section we can define the
divisor D = (s) =

∑
Y⊂X νY (s) · Y of zeroes and poles of s exactly as

for rational functions, using local trivialisations of L. D is determined by
L modulo prinicipal divisors (f) (because if s, t are two nonzero rational
sections then f = t/s is a rational function). We say D1, D2 are linearly
equivalent if they differ by a principal divisor, write Div(X) for the group
of divisors, and Cl(X) for the divisor class group of divisors modulo linear
equivalence. Then the above construction defines an isomorphism

Pic(X) ∼−→ Cl(X), L 7→ (s). (3)

The inverse of this isomorphism can be described as follows. Given D a
divisor, define a sheaf OX(D) by

Γ(U,OX(D)) = {f ∈ k(X) | f = 0 or (D + (f))|U ≥ 0}

Then OX(D) is the sheaf of sections of a line bundle L, and L 7→ D under
the isomorphism (3).
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4.1 The Picard group

Let X be a smooth complex projective variety of dimension n. Let Xan de-
note the associated compact complex manifold. Consider the exact sequence
of sheaves (the exponential sequence)

0→ Z→ OXan → O×Xan → 0,

where the second arrow is given by f 7→ exp(2πif). The induced long exact
sequence of cohomology gives

0→ H1(X,Z)→ H1(OX)→ PicX → H2(X,Z)→ H2(OX)→ · · ·

Here we used the following facts:

(1) The sequence of global sections is

0→ Z→ C→ C× → 0

(a global regular function on a projective variety is constant), in par-
ticular it is exact,

(2) H i(OXan) = H i(OX) by GAGA [Serre56],

(3) H1(X,O×Xan) = PicXan (we can define the Picard group for a complex
manifold in the same way as above), and

(4) PicXan = PicX by GAGA.

The map PicX → H2(X,Z) in the exact sequence above is called the first
Chern class and denoted c1. We will describe it explicitly shortly.

The maps H i(X,Z) → H i(OX) in the long exact sequence are the fol-
lowing composition (see [GH, p. 163]):

H i(X,Z)→ H i(X,C) ' H i
dR(X,C) � H0,i ' H i(OX).

Here the first map is given by extension of scalars from Z to C, the second
is the de Rham isomorphism, the third is the projection onto the factor H0,i

of the Hodge decomposition of H i
dR(X,C), and the fourth is the Dolbeault

isomorphism of the Hodge summand H0,i with H i(OX) (stated earlier as
part of Hodge decomposition theorem). In particular, we obtain an exact
sequence

0→ H1(X,OX)/H1(X,Z)→ PicX c1→ H1,1 ∩H2(X,Z)→ 0
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Indeed, by the long exact sequence and the above description of the map
H2(X,Z)→ H2(OX), the image of c1 : Pic(X)→ H2(X,Z) is the subgroup
of classes ω ∈ H2(X,Z) such that, writing ω = ω2,0+ω1,1+ω0,2 using the de
Rham isomorphism and Hodge decomposition, we have ω0,2 = 0. But since
ω is a real class, ω2,0 = ω0,2, so this is equivalent to ω ∈ H1,1. (This is the
Lefschetz theorem on (1, 1)-classes.) The kernel of c1 is denoted Pic0(X) and
called the Picard variety. It is a complex torus of dimension q = h1(OX).
Indeed, we have Pic0(X) = H1(OX)/H1(X,Z) by the exact sequence, so it
remains to show that H1(X,Z) ⊂ H1(OX) is a lattice, that is, the map of
R-vector spaces

H1(X,Z)⊗ R→ H1(OX)

is an isomorphism. (Then the quotient H1(OX)/H1(X,Z) is diffeomorphic
as a smooth manifold to the real torus (S1)2q.) This fact follows from the
Hodge decomposition and the description of the map H1(X,Z)→ H1(OX)
above: H1(OX) has complex dimension q, and H1(X,C) = H1,0 ⊕H0,1 has
complex dimension 2q, equivalently, H1(X,Z) has rank 2q. So H1(X,Z)⊗R
and H1(OX) have the same real dimension 2q, and it suffices to show that
the above map is injective. If ω is in the kernel then ω = ω1,0 + ω0,1 where
ω0,1 = 0, and ω1,0 = ω0,1 because ω is a real class, so ω = 0 as required.

We can describe the first Chern class c1 : PicX → H2(X,Z) explicitly
as follows. If L is a line bundle on X, let D be an element of the associated
divisor class (the locus of zeroes and poles of a rational section of L). Then
D defines a cycle [D] ∈ H2n−2(X,Z) of real codimension 2. Let

PD: H2n−2(X,Z)→ H2(X,Z)

denote the Poincaré duality isomorphism. Then c1(L) = PD([D]). See [GH,
p. 141–143].

To recap, the Picard group Pic(X) is an extension

0→ Pic0(X)→ Pic(X) c1→ H1,1 ∩H2(X,Z)→ 0

of the discrete group H1,1 ∩ H2(X,Z) by the continuous group Pic0(X).
Moreover Pic0(X) = H1(OX)/H1(X,Z) is a complex torus of dimension q.

Example 4.1. If H1(OX) = 0 then Pic(X) is discrete, and if in addition
H2(OX) = 0 then PicX ' H2(X,Z). This is the case for rational surfaces.

Example 4.2. For a K3 surface X we have H1(OX) = 0 and H2(OX) ' C.
Thus PicX ' H1,1 ∩ H2(X,Z). The abelian group H2(X,Z) has rank
22, and H1,1 has complex dimension 20. The complex subspace H1,1 ⊂

24



H2(X,C) is preserved by complex conjugation, so corresponds to a real sub-
space H1,1

R ⊂ H2(X,R) of the same dimension. The intersection PicX =
H1,1

R ∩H2(X,Z) in H2(X,R) has rank 0 ≤ ρ(X) ≤ 20, and all these values
occur. (Note however that the examples with ρ(X) = 0 are non algebraic
complex manifolds.) A general projective K3 surface has PicX ' Z gen-
erated by an ample line bundle (that is, some multiple of the generator
corresponds to the divisor class given by a hyperplane section in an embed-
ding X ⊂ PN ).

4.2 The intersection product on the Picard group

Let X be a smooth projective surface over k = C. Recall that the first
Chern class

c1 : PicX → H2(X,Z)

is identified via Poincaré duality with the map

ClX → H2(X,Z), D 7→ [D]

from the divisor class group to homology given by regarding a divisor as a
2-cycle. We have the (topological) intersection product

∩ : H2(X,Z)×H2(X,Z)→ Z

and we define the intersection product on PicX = ClX as the induced
product,

D1 ·D2 := [D1] ∩ [D2].

Algebraically, if C1, C2 ⊂ X are irreducible curves,

C1 · C2 =
∑

P∈C1∩C2

(C1 · C2)P

where the intersection multiplicity (C1 ·C2)P of C1, C2 at P ∈ X is defined
as follows: locally at P ∈ X write Ci = (fi = 0) ⊂ X, then

(C1 · C2)P := dimkOX,P /(f1, f2) (4)

One can check this agrees with the topological intersection product by a C∞

perturbation argument, see [GH, p. 62].

Remark 4.3. If X is a complex manifold and Z,W ⊂ X are complex sub-
manifolds meeting transversely, then, since the orientations of Z,W,X are
induced by the complex structure, at each point P ∈ Z ∩W the intersection
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index iP (Z,W ) = +1. That is, there are no signs in the topological inter-
section product [Z]∩ [W ]. (This easy observation is extremely important in
algebraic combinatorics.)

Remark 4.4. If X is defined over an arbitrary algebraically closed field k one
can define the intersection product using the equation (4). One then needs
to show that it is well defined modulo linear equivalence.

Suppose C ⊂ X is an irreducible curve. We describe two ways to com-
pute the self-intersection C2. First, we can find a rational function f such
that the principal divisor (f) contains C with multiplicity 1 (just take f a
local equation of C at a point of X). Then D = C−(f) is linearly equivalent
to C and does not contain C as a component, so C2 = D · C and we can
compute D · C as above. Alternatively, we have the general formula

D · C = degL|C

where L = OX(D) is (the sheaf of sections of) the line bundle associated to
D. Setting D = C we obtain

C2 = degOX(C)|C = degNC/X

where
NC/X = OX(C)|C (5)

is the normal bundle of C ⊂ X.
We explain the equality (5). We assume C ⊂ X is smooth for simplicity.

Recall that the normal bundle NC/X of C ⊂ X is the line bundle defined by
the exact sequence of vector bundles on C

0→ TC → TX |C → NC/X → 0

where TC , TX denote the tangent bundles of C, X. Dually,

0→ N ∗
C/X → ΩX |C → ΩC → 0.

Locally, let C = (x = 0) ⊂ X, then N ∗
C/X is generated by dx. We have an

exact sequence of sheaves

0→ IC/X → OX → OC → 0

where IC/X ⊂ OX is the ideal sheaf of regular functions vanishing on C.
There is a natural isomorphism

IC/X |C
∼−→ N ∗

C/X
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given locally by x 7→ dx. Finally, observe that IC/X = OX(−C) — a section
of OX(−C) over U ⊂ X is a rational function f such that (f)−C ≥ 0 on U ,
equivalently, f is regular on U and vanishes on C. So OX(−C)|C ' N ∗

C/X ,
and dualising gives (5).

For X a smooth variety, the canonical line bundle ωX = ∧dim XΩX is the
top exterior power of the cotangent bundle. The canonical divisor class KX

is the associated divisor class. Now let X be a smooth projective surface
and C ⊂ X a smooth curve. Then we have the adjunction formula

KC = (KX + C)|C . (6)

Taking degrees,
2g − 2 = degKC = (KX + C) · C

where g is the genus of C. The adjunction formula is deduced from the exact
sequence

0→ N ∗
C/X → ΩX |C → ΩC → 0 (7)

as follows. If
0→ U → V →W → 0

is an exact sequence of vector spaces of dimensions r, s, t, we have a natural
isomorphism

∧sV ' ∧rU ⊗ ∧tW.

This induces a corresponding isomorphism for an exact sequence of vector
bundles. In particular, from (7) we obtain

∧2ΩX |C ' N ∗
C/X ⊗ ΩC .

Rearranging and using NC/X = OX(C)|C gives

ωC = ωX ⊗OX(C)|C

and passing to the associated divisors we obtain the adjunction formula (6).

Example 4.5. Let X be a smooth surface, P ∈ X a point, and π : X̃ → X
the blowup of P ∈ X. So π−1P = E is a copy of P1, the exceptional curve,
and π restricts to an isomorphism

π : X̃ \ E ∼−→ X \ {P}.

We compute that the self intersection E2 = −1. Let D ⊂ X be a smooth
curve through P . Let D′ ⊂ X̃ be the strict transform of D, that is, D′ is
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the closure of the preimage of D \ {P}. Then D′ is a smooth curve which
intersects E transversely in one point. In particular, D′ · E = 1. Now
consider the pullback π∗D of D. (In general, if f : X → Y is a morphism of
smooth varieties and D is a divisor on Y , then locally on Y the divisor D
is principal, say D|Ui = (gi) for some open cover U = {Ui}, and we define
f∗D by f∗D|f−1Ui

= (gi ◦ f).) Let x, y be local coordinates at P ∈ X such
that D = (y = 0). Over P ∈ X we have a chart of the blowup π of the form

A2
u,y′ → A2

x,y, (u, y′) 7→ (u, uy′).

We deduce that π∗D = D′ + E (because in this chart π∗D = π∗(y = 0) =
(uy′ = 0) = E +D′). Now π∗D ·E = 0 because we can write D ∼ B, where
B is a divisor not containing P , then π∗D · E = π∗B · E = 0 since π∗B is
disjoint from E. Combining we deduce that E2 = −1 as claimed.

We make a few more comments about the self-intersection C2 of a smooth
curve C ⊂ X. If C2 < 0 then C cannot move in a family, that is, there does
not exist a non-trivial family {Ct} of curves with C0 = C. Indeed, given
such a family we have C2 = C · Ct ≥ 0, a contradiction. Now suppose
C2 ≥ 0 and {Ct} is a family with C0 = C. The family determines a section
s ∈ Γ(C,NC/X) of the normal bundle of C in X as follows. Locally, write
C = (f = 0) ⊂ X, and Ct = (f + tg + · · · = 0) where · · · denotes higher
order terms in t. Then the section s of NC/X = I∗C/X |C is locally given
by f 7→ ḡ, where ḡ ∈ OC is the image of g ∈ OX . (So, s corresponds to
the first order deformation of C given by the {Ct}.) This gives a geometric
explanation for the formula C2 = degNC/X in this case — the zero locus of
s is approximately equal to C ∩ Ct for small t.

5 The Riemann–Roch theorem

If X is an algebraic variety over a field k and F is a coherent sheaf on X then
H i(X,F) = 0 for i > dimX. If in addition X is projective then H i(X,F)
is a finite dimensional k-vector space for all i. See [Serre55, p. 259, Thm. 1].
We write hi(X,F) = dimk H

i(X,F).
Now assume X is a projective variety over k of dimension n and F is a

coherent sheaf on X. We define the Euler-Poincaré characteristic χ(X,F)
of F by

χ(X,F) :=
n∑

i=0

(−1)i dimk H
i(X,F).

If
0→ E → F → G → 0

28



is an exact sequence of sheaves on X then we have

χ(X,F) = χ(X, E) + χ(X,G). (8)

Indeed, we have the long exact sequence of cohomology groups

0→ H0(X, E)→ H0(X,F)→ H0(X,G)→ H1(X, E)→ · · · → Hn(X,G)→ 0.

By linear algebra the alternating sum of the dimensions of the terms in this
exact sequence is zero. This gives (8).

Because of the additivity property (8) it is usually much easier to com-
pute χ(X,F) than the individual terms hi(X,F). In fact, χ(X,F) can be
expressed solely in terms of topological invariants of X and F . This is the
content of the Hirzebruch–Riemann–Roch formula. We describe the formula
in case F is a line bundle L = OX(D) and dimX = 1, 2.

5.1 Curves

Let X be a smooth projective curve over k = C. The cohomological form of
the Riemann–Roch formula for L = OX(D) is

χ(OX(D)) = χ(OX) + degD.

That is,

h0(OX(D))− h1(OX(D)) = h0(OX)− h1(OX) + degD.

Serre duality defines an isomorphism H1(OX(D)) ' H0(OX(KX −D))∗, so
we can rewrite the above formula as

h0(OX(D))− h0(OX(KX −D)) = h0(OX)− h0(OX(KX)) + degD.

Finally h0(OX) = 1 and h0(OX(KX)) = g, the genus of X, so we obtain

Theorem 5.1. (Riemann–Roch for curves) Let X be a smooth projective
curve of genus g over k = C. Then

h0(OX(D))− h0(OX(KX −D)) = 1− g + degD.

The Riemann–Roch formula in this form was proved in 508A (notes
available on my website). In that course we used the notation L(D) =
H0(OX(D)) = Γ(X,OX(D)) and l(D) = dimk L(D).
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5.2 Surfaces

Theorem 5.2. (Riemann Roch for surfaces) Let X be a smooth projective
surface over k = C. Then

χ(OX(D)) = χ(OX) +
1
2
D(D −KX).

Proof. First suppose that D = C is a smooth curve on X. We have the
exact sequence of sheaves

0→ OX(−C)→ OX → OC → 0

on X, where OX(−C) = IC/X ⊂ OX is the ideal sheaf of C ⊂ X (the sheaf
of regular functions on X vanishing on C). We tensor this exact sequence
with the line bundle OX(C) to obtain

0→ OX → OX(C)→ OX(C)|C → 0

(note that tensor product of line bundles corresponds to addition of divisors).
Now by additivity of χ we have

χ(OX(C)) = χ(OX) + χ(OX(C)|C).

So, to verify the Riemann–Roch formula in this case, we need to show that

χ(OX(C)|C) =
1
2
C(C −KX).

By Riemann–Roch on C we have

χ(OX(C)|C) = 1− g + degOX(C)|C = 1− g + C2

where g is the genus of C, and

2g − 2 = degKC = (K + C)C

by the adjunction formula. Combining we obtain

χ(OX(C)|C) = −1
2
(K + C)C + C2 =

1
2
C(C −KX)

as required.
Now suppose D is arbitrary. Let H be a hyperplane section of X in some

projective embedding X ⊂ PN . Then, for n � 0, D + nH is a hyperplane
section in some embedding X ⊂ PM . This follows from Serre vanishing
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(if F is a coherent sheaf on a projective variety X and H is a hyperplane
section, then H i(X,F ⊗ OX(nH)) = 0 for i > 0 and n � 0), together
with the embedding criterion (a map X → PN from a projective variety to
projective space defined by a line bundle L is an embedding if the global
sections s ∈ Γ(X,L) separate points and tangent vectors). We omit the
details here. We write

D = (D + nH)− nH ∼ A−B,

where A and B are general hyperplane sections of X in two (different)
embeddings in projective space. In particular, A and B are smooth and
irreducible. (This is Bertini’s theorem: if X ⊂ PN is a smooth closed
subvariety of projective space then a general hyperplane section of X is
smooth, and is irreducible if dimX > 1. See [GH, p. 137].) Now consider
the exact sequence

0→ OX(A−B)→ OX(A)→ OX(A)|B → 0.

Note that OX(D) ' OX(A−B) because D ∼ A−B. So

χ(OX(D)) = χ(OX(A))− χ(OX(A)|B),

and we can compute χ(OX(A)) using the Riemann–Roch formula for an
irreducible smooth divisor on a surface proved above and χ(OX(A)|B) using
the Riemann-Roch formula on B. We deduce the Riemann–Roch formula
on a surface in the general case.

As in the case of curves, the Riemann–Roch formula for surfaces is used
together with Serre duality.

Theorem 5.3. (Serre duality) Let X be a smooth projective variety over
k = C of dimension n and D a divisor on X. Then there is a k-bilinear
map

H i(X,OX(D))×Hn−i(X,OX(KX −D))→ Hn(OX(KX)) ' k.

which induces an isomorphism H i(X,OX(D)) ' Hn−i(X,OX(KX −D))∗.

This is proved in [Hartshorne, III.7] using projective methods and in
[GH, p. 153] and [Voisin, p. 135, Thm. 5.32] using Hodge theory. (Note that
the analytic approach is closely related to Poincaré duality.) It was also
proved for curves in 508A using residues of differential forms (there we used
the notation I(D) for H1(OX(D))).
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Combining the Riemann–Roch formula for surfaces with Serre duality
we obtain

h0(OX(D))− h1(OX(D)) + h0(OX(KX −D)) = χ(OX) +
1
2
D(D −KX).

In applications we often use the resulting inequality

h0(OX(D)) + h0(OX(KX −D)) ≥ χ(OX) +
1
2
D(D −KX)

because h1(OX(D)) does not have a direct geometric meaning.
If X is a smooth projective curve then χ(OX) = 1 − g where g is the

genus of X. The analogous result for surfaces is

Theorem 5.4. (Noether’s formula)[GH, p. 600] Let X be a smooth projec-
tive surface over k = C. Then

χ(OX) =
1
12

(K2
X + e(X)),

where
e(X) :=

∑
(−1)i dimRH

i(X,R)

is the (topological) Euler characteristic of X.

6 Hodge index theorem

Let X be a smooth complex projective surface (or more generally a compact
complex Kähler manifold). Consider the wedge product

∧ : H2(X,R)×H2(X,R)→ R.

Recall that we have the Hodge decomposition

H2(X,C) = H2,0 ⊕H1,1 ⊕H0,2,

and H0,2 = H2,0, H1,1 = H1,1. Thus H2,0⊕H0,2 and H1,1 are preserved by
complex conjugation, so are obtained from R-vector subspaces (H2,0⊕H0,2)R
and H1,1

R of H2(X,R) by extension of scalars from R to C, and

H2(X,R) = (H2,0 ⊕H0,2)R ⊕H1,1
R .

Theorem 6.1. (Hodge index theorem for surfaces) [GH, p. 123–125] [Voisin,
p. 152] The wedge product is positive definite on (H2,0⊕H0,2)R and has sig-
nature (1, h1,1 − 1) on H1,1

R .
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The theorem is proved using the Lefschetz decomposition of cohomology.
We will prove a weaker assertion in the algebraic context shortly.

Let X be a smooth projective surface over k = C. We prove the first
statement in the Hodge index theorem: the wedge product is positive definite
on (H2,0⊕H0,2)R. (The proof of the second statement, that the signature of
H1,1

R is (1, h1,1 − 1), is more involved.) Let 0 6= [ω] ∈ (H2,0 ⊕H0,2)R. Then
ω = α+ ᾱ where α is a (2, 0)-form, and

ω2 = ω ∧ ω = 2α ∧ ᾱ

(Note α2 = ᾱ2 = 0 since α is a (2, 0)-form.) Locally on X, write α =
fdz1 ∧ dz2 where f is a smooth C-valued function and z1, z2 are complex
coordinates on X. Then

ω2 = 2α ∧ ᾱ = 2|f |2dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2

= −2|f |2dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 = −2|f |2(−2i)2dx1 ∧ dy1 ∧ dx2 ∧ dy2

= 8|f |2dx1 ∧ dy1 ∧ dx2 ∧ dy2.

Here we wrote zj = xj + iyj and used the identity

dz ∧ dz̄ = (dx+ idy) ∧ (dx− idy) = −2idx ∧ dy.

We deduce that [ω]2 =
∫
X ω2 > 0 as required.

We now describe the algebraic consequences of the Hodge index theorem.
Let X be a smooth projective surface over k = C as above. We say two
divisors D,D′ on X are numerically equivalent and write D ≡ D′ if D ·C =
D′ ·C for every curve C ⊂ X. We write NumX for the (free) abelian group
of divisors modulo numerical equivalence, and ρ(X) for the rank of NumX.

Corollary 6.2. NumX = H1,1 ∩ (H2(X,Z)/Tors) and the intersection
product on NumX has signature (1, ρ− 1).

Proof. Recall that the intersection product on Cl(X) = Pic(X) is induced
from the wedge product via the first Chern class

c1 : PicX → H2(X,Z),

and the image of c1 is H1,1 ∩ H2(X,Z). Let H be a hyperplane section
of X in some embedding in projective space. Then H2 > 0, so the wedge
product on the orthogonal complementH⊥ ⊂ H1,1

R is negative definite by the
Hodge index theorem. In particular, the form is negative definite on H⊥ ⊂
H1,1 ∩ (H2(X,Z)/Tors), and so is nondegenerate of hyperbolic signature
(1, r − 1) on H1,1 ∩ (H2(X,Z)/Tors). We deduce that NumX = H1,1 ∩
(H2(X,Z)/Tors), of signature (1, ρ− 1), as required.
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We give an algebraic proof that NumX has hyperbolic signature (1, ρ−1)
using the Riemann–Roch formula. Let H be a hyperplane section of X.
Then H2 > 0. If the signature is not hyperbolic, there exists a divisor D
such that D · H = 0 and D2 > 0. (Note that the intersection product on
NumX is nondegenerate by construction.) We show that such a divisor
cannot exist. Consider the Riemann–Roch formula for nD, n ∈ Z:

h0(OX(nD))+h0(OX(KX−nD)) ≥ χ(OX(nD)) = χ(OX)+
1
2
nD(nD−KX).

In particular, as n → ±∞, χ(OX(nD)) ∼ 1
2n

2D2 → ∞. We claim that
h0(OX(nD)) = 0 for all n ∈ Z. Indeed if 0 6= s ∈ H0(OX(nD)), then
D′ = (s = 0) is an effective divisor linearly equivalent to D. But then
D′ · H = D · H = 0, and H is a hyperplane section, so D′ = 0. This
contradicts D2 > 0. We deduce that h0(OX(KX − nD))→∞ as n→ ±∞.
For n� 0, pick 0 6= s ∈ H0(KX − nD), then tensor product with s defines
an inclusion H0(KX + nD) ⊂ H0(2KX). So h0(KX + nD) ≤ h0(2KX) for
n� 0, a contradiction.

7 Birational geometry of surfaces

7.1 The blowup of a point on a smooth surface

Let X be a smooth complex surface and P ∈ X a point. The blowup of
P ∈ X is a birational morphism π : X̃ → X such that E := π−1P is a copy
of P1, the exceptional curve, and π restricts to an isomorphism

X̃ \ E ∼−→ X \ {P}.

If x, y are local coordinates at P ∈ X, then, working locally analytically
at P ∈ X, we can identify P ∈ X with 0 ∈ A2

x,y. Then the blowup π : X̃ → X
is given by two charts as follows:

A2
u,y′ → A2

x,y (u, y′) 7→ (x, y) = (u, uy′)

A2
x′,v → A2

x,y (x′, v) 7→ (x, y) = (vx′, v)

Here the exceptional curve E is given by (u = 0) and (v = 0) in the two
charts. We observed earlier that E2 = −1.

Proposition 7.1. We have an isomorphism

Pic(X)⊕ Z ∼−→ Pic X̃, (D,n) 7→ π∗D + nE.
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Proof. By the definition of the divisor class group, we have an exact sequence

ZE → Cl(X̃)→ Cl(X̃ \ E)→ 0

where the second arrow is given by restriction to the open set X̃ \ E ⊂ X̃.
(See [Hartshorne, p. 133, II.6.5] for more details). Now X̃ \ E ' X \ {P}
and Cl(X \ {P}) = Cl(X) because P ∈ X has codimension 2. So we obtain
an exact sequence

ZE → Pic(X̃)→ Pic(X)→ 0.

It remains to show that the first arrow is injective. This follows from E2 =
−1.

Next we describe the blowup topologically. Let P ∈ B ⊂ X be a ball
around P ∈ X (in the Euclidean topology) and N = π−1B, a tubular
neighbourhood of E ⊂ X̃. We consider the Mayer–Vietoris sequence in
(integral) cohomology for X̃ = (X̃ \E)∪N and X = (X \ {P})∪B. Recall
that the Mayer–Vietoris sequence for a union K ∪ L is

· · · → H i(K ∪ L)→ H i(K)⊕H i(L)→ H i(K ∩ L)→ H i+1(K ∪ L)→ · · · .

In our case we obtain a commutative diagram

· · · → H i(X̃) → H i(X̃ \ E)⊕H i(N) → H i(∂N) → H i+1(X̃) → · · ·
↑ ↑ ↑ ↑

· · · → H i(X) → H i(X \ {P})⊕H i(B) → H i(∂B) → H i+1(X) → · · ·

Now B is contractible, so H i(B) = H i(pt), and N is homotopy equivalent
to E ' P1, so H i(N) ' H i(P1). Also X̃ \ E ' X \ {P} and ∂N ' ∂B. We
deduce that H2(X̃,Z) ' H2(X,Z)⊕ Z and H i(X̃,Z) ' H i(X,Z) for i 6= 2.
Note that the isomorphism H2(X̃,Z) ' H2(X,Z) ⊕ Z is compatible with
the isomorphism Pic(X̃) ' PicX ⊕ Z obtained above under c1.

Proposition 7.2. Let X be a smooth surface, π : X̃ → X the blowup of a
point P ∈ X, and E = π−1P the exceptional curve. Then KX̃ = π∗KX +E.

Proof. Let x, y be local coordinates at P ∈ X and ω = dx ∧ dy, a rational
2-form on X. Then KX = (ω), the divisor of zeroes and poles of ω. (Here
(ω) :=

∑
C⊂X νC(ω)C where the sum is over irreducible divisors C ⊂ X

and νC(ω) is the order of vanishing of ω along C defined as follows: let
Q ∈ C be a general point, z, w local coordinates at Q, and write ω =
fdz ∧ dw where f ∈ k(X), then νC(ω) := νC(f). Equivalently, (ω) is
the divisor of zeroes and poles of ω regarded as a rational section of the
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canonical line bundle ωX). Also KX̃ = (π∗ω) = (d(π∗x) ∧ d(π∗y)). (If
f : X → Y is a morphism of smooth varieties and ω is a k-form on Y
then the pullback f∗ω of ω is defined in the obvious way: locally on Y ,
ω =

∑
gi1···ikdxi1 ∧ · · · ∧ dxik where x1, . . . , xn are local coordinates and

f∗ω :=
∑
f∗gi1···ikd(f

∗xi1) ∧ · · · ∧ d(f∗xik), where f∗g = g ◦ f denotes
pullback of functions.)

We need to compare π∗KX = π∗(ω) and KX̃ = (π∗ω). Clearly these
divisors coincide over X̃ \E (because π restricts to an isomorphism X̃ \E '
X \ {P}.) The divisor π∗(ω) does not contain E = π−1P because ω is
regular and nonzero at P . We compute the coefficent of E in (π∗ω) by a
local calculation: one chart of the blowup is

A2
u,y′ → A2

x,y, (u, y′) 7→ (x, y) = (u, uy′).

So, on this chart,

π∗ω = d(π∗x) ∧ d(π∗y) = du ∧ d(uy′) = du ∧ (y′du+ udy′) = udu ∧ dy′.

Thus (π∗ω) = (u = 0) = E in this chart. Combining, we deduce that
KX̃ = π∗KX + E.

7.2 Elimination of indeterminacy of rational maps

Let X and Y be varieties and f : X 99K Y a rational map. (Recall that a
rational map f : X → Y is a morphism f : U → Y from a Zariski open subset
U ⊂ X, and we regard two rational maps f1, f2 : X 99K Y as equivalent if
they agree on U1 ∩ U2.) Assume that X is smooth. Then f restricts to a
morphism f : U → Y where U = X \Z and Z ⊂ X is closed of codimension
≥ 2. To see this, assume (for simplicity) Y is projective, and write Y ⊂ PN ,
where Y is not contained in a hyperplane. Then f : X 99K Y ⊂ PN is given
by f = (f0 : · · · fN ) where fi ∈ k(X)× are nonzero rational functions on
X. In particular, f is well defined at P ∈ X if each fi is regular at P
and some fj is nonzero at P . Moreover, the (N + 1)-tuples (f0 : · · · : fN )
and (gf0 : · · · : gfN ) define the same rational map for any g ∈ k(X)×. So,
locally near a given point P ∈ X, we can clear denominators so that each fi

is regular, and cancel common factors so that the locus of common zeroes
has codimension ≥ 2. Thus f is well defined outside a locus Z ⊂ X of
codimension ≥ 2 as claimed. In particular, if X is a smooth surface, a
rational map f : X 99K Y is well defined outside a finite set of points Z ⊂ X.

Recall that for X a smooth variety and D a divisor on X the complete
linear system |D| on X is the set of effective divisors D′ linearly equivalent
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to D. It is identified with the projectivisation PΓ(OX(D)) of the space of
global sections s of the associated line bundle OX(D) via s 7→ D′ = (s = 0).
A linear system is a projective subspace of a complete linear system. We
say an irreducible divisor F ⊂ X is a fixed component of a linear system δ
if every D ∈ δ contains F .

A rational map f : X 99K Y ⊂ PN as above corresponds to the linear
system δ on X without fixed components given by

δ := {f∗H | H ⊂ PNa hyperplane}.

Note that f∗H makes sense because f is well defined outside a codimension
2 locus Z ⊂ X. Explicitly, write f = (f0 : · · · : fN ), Di = (fi), and D′

i =
Di − minj Dj . (Here by minj Dj we mean: write Dj =

∑
k njkYk, then

minj Dj :=
∑

k(minj njk)Yk.) Then D′
i = f∗(Xi = 0), and δ is the linear

system generated (as a projective space) by the D′
i. Equivalently, in terms

of line bundles, let L = f∗OPN (1) be the pullback of the line bundle OPN (1)
on PN , and si = f∗Xi ∈ Γ(X,L) the global sections of L given by the
pullback of the global sections Xi of OPN (1). Then f = (s0 : · · · : sN ), and
D′

i = (si = 0).
The base locus of δ is

Bs δ := {P ∈ X | P ∈ D for all D ∈ δ} ⊂ X,

It is the locus Z ⊂ X where f is undefined. In the above notation

Z = Bs δ =
N⋂

i=0

D′
i = (s0 = · · · = sN = 0) ⊂ X.

Proposition 7.3. Let X be a smooth surface and f : X 99K Y a rational
map to a variety Y . Then there exists a sequence of blowups

W = Xn
πn−→ Xn−1 −→ · · · −→ X1

π1−→ X0 = X

such that the induced map g = f ◦ π1 ◦ · · ·πn is a morphism. That is, we
have a commutative diagram

W
p

~~||
||

||
|| g

  A
AA

AA
AA

A

X
f //_______ Y

where p = π1 ◦ · · · ◦ πn is the composite of a sequence of blowups and g is a
morphism.
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Proof. Let δ be the linear system defining the rational map f and suppose
P ∈ X is a basepoint of δ. Let D ∈ δ be a general element. Let x, y be local
coordinates at P and write D = (f(x, y) = 0) near P . Let

f(x, y) = fm(x, y) + fm+1(x, y) + · · ·

where fk(x, y) is homogeneous of degree k. So m is the multiplicity of D at
P ∈ X. We compute that π∗D = D′ +mE where D′ is the strict transform
of D. (Recall that the strict transform D′ of D is defined as follows: D′

is the closure in X̃ of the inverse image of the restriction of D to X \ {P}
under the isomorphism X̃ \ E ' X \ {P}.) We use the chart

A2
u,y′ → A2

x,y, (u, y′) 7→ (x, y) = (u, uy′).

In this chart, π∗D = (π∗f) = (f(u, uy′) = 0), and

f(u, uy′) = (fm(1, y′) + ufm+1(u, y′) + · · · )um,

so π∗D = D′ + mE as claimed. The composite rational map f̃ = f ◦ π is
defined by the linear system

δ̃ = {D̃ := π∗D −mE | D ∈ δ}.

Note that
D̃2 = (π∗D −mE)2 = D2 −m < D2.

(Here we used E2 = −1, and π∗A ·E = 0, π∗A ·π∗B = A ·B for A,B divisors
on X.) If f̃ is not a morphism we repeat this process.

If δ is a linear system without fixed components then D2 ≥ 0 for D ∈ δ
(because there exist effective divisors D1, D2 ∈ δ with no common compo-
nents, so D2 = D1 ·D2 ≥ 0). Hence the above procedure stops after a finite
number of blowups.

Example 7.4. Consider the rational map

f : P2 99K P1, (X0 : X1 : X2) 7→ (X0 : X1).

The map f corresponds to the linear system

δ = {(a0X0 + a1X1 = 0) | (a0 : a1) ∈ P1}

on P2 which has a single basepoint P = (0 : 0 : 1) ∈ P2. Let π : X̃ → P2

be the blowup of P ∈ P2. Then the composite f̃ := f ◦ π : X̃ → P1 is a
morphism.
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7.3 Negativity of contracted locus

Before stating the result we quickly review the notion of a normal variety. A
variety X is normal if for every point Q ∈ X the local ring OX,Q is integrally
closed. Equivalently, X satisfies the following two conditions:

(R1) The singular locus of X has codimension ≥ 2.

(S2) If U ⊂ X is open, Z ⊂ X is closed of codimension ≥ 2, and f is a
rational function which is regular on U \ Z, then f is regular on U .

See [Matsumura, p. 183, Thm. 23.8]. In particular, a normal surface has a
finite number of singular points, and (for example) a surface obtained from
a smooth surface by glueing two points together is not normal (since it does
not satisfy the condition S2). Smooth varieties are normal, and a curve is
normal iff it is smooth. If X is a variety then the normalisation of X is a
normal variety Xν together with a finite birational morphism ν : Xν → X.
Any dominant map f : Y → X from a normal variety Y factors uniquely
through the normalisation of X.

Theorem 7.5. Let f : X → Y be a birational morphism from a smooth
projective surface X to a normal projective surface Y . Let E1, . . . , Er be the
exceptional curves over a point Q ∈ Y (the curves contracted by f to Q).
Then (

∑
aiEi)2 < 0 for (a1, . . . , ar) 6= 0.

Proof. We work locally over Q ∈ Y . Let C ⊂ X be a irreducible curve such
that C∩Ei 6= ∅ (and C 6= Ei) for all i. For example, we can take C a general
hyperplane section of X. Choose g ∈ OY,Q such that f(C) ⊂ F := (g = 0).
Then (f∗g) = f∗F = F ′ +

∑
µiEi where F ′ denotes the strict transform of

F and µi > 0 for each i. Write D =
∑
µiEi. Then D · Ei = −F ′ · Ei < 0

for all i because D + F ′ = (f∗g) ∼ 0 and F ′ contains C (which intersects
each Ei) by construction. Now the result follows from the algebraic lemma
below.

Lemma 7.6. Let M be a free abelian group spanned by elements e1, . . . , er
and

M ×M → Z, (a, b) 7→ a · b

a symmetric bilinear form such that

• ei · ej ≥ 0 for all i 6= j, and

• there exists a linear combination d =
∑
µjej, with µj > 0 for all j,

such that d · ei < 0 for all i.
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Then e1, . . . , er are linearly independent and m2 < 0 for 0 6= m ∈M .

Proof. Write aij = ei · ej and let

φ : Rr × Rr → R, φ(x, y) =
∑

aijxiyj

be the symmetric bilinear form with matrix A = (aij). We need to show
that φ is negative definite. The symmetric matrix A can be diagonalised by
an orthogonal matrix P . That is, there exists P such that P TAP is diagonal
and P TP = I. Let λ1 ≤ . . . ≤ λr be the diagonal entries of P TAP (the
eigenvalues of A). Then, writing x = Px′, we have φ(x, x) =

∑
λix

′
i
2 and

‖x′‖ = ‖x‖. We deduce that, for 0 6= x ∈ Rr, we have

φ(x, x)
‖x‖2

≤ λr,

with equality iff x is an eigenvector of A with eigenvalue λr.
Let 0 6= x ∈ Rr be a vector such that φ(x, x)/‖x‖2 is maximal. Note that

replacing x = (x1, . . . , xr) by (|x1|, . . . , |xr|) does not decrease φ(x, x)/|x|2.
Indeed ∑

aijxixj ≤
∑

aij |xi||xj |

because aij = ei · ej ≥ 0 for i 6= j by assumption. So, we may assume xi ≥ 0
for all i. For m ∈ Rr we have

φ(m,x) =
∑
i,j

aijmixj =
∑

i

(
∑

j

aijxj)mi = λr

∑
i

ximi (9)

because Ax = λrx as noted above. Now set m = d, where d = (µ1, . . . , µr)
is as in the statement. Then φ(d, x) < 0 because d · ei < 0 and xi ≥ 0
for all i, and

∑
xiµi > 0, so λr < 0 by (9). Thus φ is negative definite as

required.

Corollary 7.7. Let f : X → Y be a birational morphism from a smooth
projective surface X to a normal projective surface Y . Let {Ei} be the
exceptional curves. Then we have an exact sequence

0→ ⊕ZEi → ClX → ClY → 0.

Proof. We have an exact sequence

⊕ZEi → ClX → Cl(X \ ∪Ei)→ 0
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by the definition of the divisor class group (see [Hartshorne, p. 133, II.6.5]).
Let f(∪Ei) = {Q1, . . . , Qs}, then f restricts to an isomorphism

X \ ∪Ei
∼−→ Y \ {Q1, . . . , Qs}.

So
Cl(X \ ∪Ei) ' Cl(Y \ {Q1, . . . , Qs}) ' Cl(Y ).

Finally, injectivity of the map ⊕ZEi → ClX follows from the theorem.

7.4 Factorisation of birational morphisms

Lemma 7.8. Let f : X → Y be a birational morphism of smooth projective
surface. Let Ei be the exceptional curves of f . Then

KX = f∗KY +
∑

aiEi

where ai ∈ Z and ai > 0 for all i.

Proof. By Cor. 7.7 we have an exact sequence

0→ ⊕ZEi → ClX → ClY → 0.

So KX = f∗KY +
∑
aiEi for some ai ∈ Z. It remains to show that ai > 0

for each i. Let f(∪Ei) = {Q1, . . . , Qs}, so f restricts to an isomorphism

X \ ∪Ei
∼−→ Y \ {Q1, . . . , Qs},

and let ω be a rational 2-form on Y which is regular and nonzero at each
Qj . Then

(π∗ω) = π∗(ω) +
∑

aiEi

and the divisor π∗(ω) is disjoint from the Ei by construction, so ai is the
order of vanishing of π∗ω along Ei. In particular ai ≥ 0 because π∗ω is
regular near Ei. We show ai > 0. Let f(Ei) = Qj , let P ∈ Ei be a general
point, and choose local coordinates u, v at P ∈ X and x, y at Qj ∈ Y . Then
ω = gdx ∧ dy where g ∈ OX,P and g(P ) 6= 0. Now π∗ω = π∗g · Jdu ∧ dv
where

J =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣
is the Jacobian of the map f with respect to these coordinates. But J(P ) = 0
by the inverse function theorem (if J(P ) 6= 0, then f is a local isomorphism
near P ∈ X). Thus π∗ω vanishes along Ei, so ai > 0.
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Corollary 7.9. KX · Ej < 0 for some j.

Proof. We have KX · (
∑
aiEi) = (

∑
aiEi)2 < 0 by Thm. 7.5 and ai > 0 for

all i. So KX · Ej < 0 for some j.

7.5 Numerical characterisation of (−1)-curves

Lemma 7.10. Let X be a smooth projective surface and C ⊂ X an irre-
ducible curve (not necessarily smooth). Then

(KX + C) · C = 2pa(C)− 2

where pa(C) := h1(OC) is the arithmetic genus of C. Let ν : Cν → C be the
normalisation of C. Then pa(C) ≥ g(Cν) with equality iff C is smooth.

Proof. The exact sequence of sheaves

0→ OX(−C)→ OX → OC → 0

gives
χ(OX) = χ(OX(−C)) + χ(OC)

and
χ(OX(−C)) = χ(OX) +

1
2
(−C) · (−C −KX)

by Riemann–Roch. Combining we deduce that χ(OC) = −1
2C · (C +KX),

and rearranging gives 2pa(C)− 2 = (KX + C) · C.
To relate the arithmetic genus of C to the genus of its normalisation Cν ,

we consider the exact sequence of sheaves on C

0→ OC → ν∗OCν → T → 0.

(If f : X → Y is a morphism and F is a sheaf on X then f∗F is the sheaf
on Y defined by f∗F(U) = F(f−1U). If F is coherent and f is finite then
H i(Y, f∗F) = H i(X,F). This follows because the Cech cohomology can be
computed using an affine open covering, and f−1U ⊂ X is affine if U ⊂ Y
is affine and f is finite.) The sheaf T := ν∗OCν/OC is a direct sum of
skyscraper sheaves supported at the singular points of C. For example, if
P ∈ C is a node then T has stalk k at P . The long exact sequence of
cohomology gives an exact sequence

0→ H0(T )→ H1(OC)→ H1(OCν )→ 0.
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Here we used H0(OC) = H0(OCν ) = k and H1(T ) = 0 because T is a direct
sum of skyscraper sheaves. We deduce that

pa(C) = h1(OCν ) = h1(OC) + h0(T ) ≥ h1(OC) = g(C),

with equality iff T = 0 or, equivalently, C = Cν is smooth.

Remark 7.11. If C is smooth then the equality (KX + C) · C = 2g(C) − 2
follows from the adjunction formula (KX + C)|C = KC . More generally, if
C is an irreducible curve, the dualising sheaf is a line bundle ωC on C such
that ωX(C)|C = ωC where ωX = ∧2ΩX is the canonical line bundle on X,
and degωC = 2pa(C) − 2. (If C is smooth then ωC = ΩC is the canonical
line bundle.) This gives a more direct proof of the equality in the singular
case. See [Hartshorne, III.7] for more details.

Corollary 7.12. Let f : X → Y be a birational morphism from a smooth
surface X to a normal surface Y . Suppose E ⊂ X is a curve contracted
by f such that KX · E < 0. Then E is a (−1)-curve, that is, E ' P1 and
E2 = −1.

Proof. We have KX ·E < 0 by assumption and E2 < 0 by negativity of the
contracted locus. So

2pa(E)− 2 = KX · E + E2 < 0.

We deduce that pa(E) = 0 and KX · E = E2 = −1. Now g(Eν) ≤ pa(E) so
g(Eν) = 0 and E = Eν ' P1.

7.6 Castelnuovo’s contractibility criterion

Theorem 7.13. Let X be a smooth projective surface and E ⊂ X a (−1)-
curve. Then there is a birational morphism π : X → Y to a smooth surface
Y such that π is the blowup of a point P ∈ Y and E = π−1P .

Proof. The idea of the proof is to write down a line bundle on X whose
sections define the desired map π : X → Y ⊂ PN . Let H be a hyperplane
section of X in some embedding. Assume that H1(OX(H)) = 0. (This can
be achieved by replacing H by a sufficiently large multiple nH, by Serre
vanishing.) Let H ·E = k, a positive integer. We define D = H+kE. Then

D · E = k + kE2 = 0

and D ·C > 0 for C ⊂ X a curve, C 6= E. (So, D looks like the pullback of a
hyperplane section under a map π which contracts E but does not contract
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any other curves.) We show that the global sections of OX(D) define a
morphism π as in the statement.

We first describe the global sections ofOX(D) explicitly. Let {s0, . . . , sn}
be a basis of H0(OX(H)). Note that H0(OX(E)) is 1-dimensional. (Equiva-
lently, if D ∼ E and D ≥ 0 then D = E. To see this, note that D ·E = E2 <
0, so D contains E. Then D − E is effective and D − E ∼ 0, so D = E.)
Let 0 6= s ∈ H0(OX(E)) be a nonzero section, then E = (s = 0) ⊂ X.
Tensoring the exact sequence

0→ OX(−E)→ OX → OE → 0

with OX(H + iE), 0 ≤ i ≤ k, we obtain the exact sequence

0→ OX(H + (i− 1)E)→ OX(H + iE)→ OE(k − i)→ 0.

Here since E ' P1 we write OE(d) for the unique line bundle on E ' P1 of
degree d, and we have OX(H+iE)|E = OE(d) where d = (H+iE)·E = k−i.
Now H1(OE(k − i)) = 0 because k − i ≥ 0. So the long exact sequence of
cohomology gives

0→ H0(OX(H + (i− 1)E))→ H0(OX(H + iE))→ H0(OE(k − i))

→ H1(OX(H + (i− 1)E))→ H1(OX(H + iE))→ 0.

Recall that H1(OX(H)) = 0 by assumption. It follows by induction that
H0(OX(H + iE)) = 0 for 0 ≤ i ≤ k. So the sequence

0→ H0(OX(H + (i− 1)E)→ H0(OX(H + iE))→ H0(OE(k − i))→ 0

is exact for 1 ≤ i ≤ k. We have

H0(OE(d)) = H0(OP1(d)) = 〈Xd
0 , X

d−1
0 X1, . . . , X

d
1 〉k.

Let ai,0, . . . , ai,k−i ∈ H0(OX(H + iE)) be a lift of a basis of H0(OE(k − i))
for each 1 ≤ i ≤ k. Then H0(OX(H + kE)) has basis

sks0, . . . , s
ksn, s

k−1a1,0, . . . , s
k−1a1,k−1, . . . , sak−1,0, sak−1,1, ak,0.

Now let π : X 99K Y ⊂ PN be the rational map defined by H0(OX(D)).
Then the restriction of π toX\E is an isomorphism onto its image. Indeed, s
is nonzero on X \E and s0, . . . , sn define an embedding of X by assumption,
so sks0, . . . , s

ksn define an embedding onX\E. Second, π is a morphism. To
see this, note that ak,0 is nonzero along E, and we already observed that π is
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defined on X \E. Third, π contracts E to the point P = (0 : · · · : 0 : 1) ∈ Y .
(Note: we do not know yet that P ∈ Y is a smooth point.)

Let V = (XN 6= 0) ⊂ Y , an open neighbourhood of P ∈ Y , and U =
π−1V = (ak,0 6= 0) ⊂ X the corresponding neighbourhood of E ⊂ X. Let
X = ak−1,0/ak,0, Y = ak−1,1/ak,0 ∈ Γ(U,OX(−E)) and x = sX, y = sY ∈
Γ(U,OX). Then x, y,X, Y define a morphism

U → A2
x,y × P1

(X:Y )

which factors through

Bl0 A2
x,y = (xY − yX = 0) ⊂ A2

x,y × P1
(X:Y ).

This gives a commutative diagram

(E ⊂ U) −−−−→ (F ⊂ Bl0 A2)yπ

y
(P ∈ V ) −−−−→ (0 ∈ A2)

where F ⊂ Bl0 A2 is the exceptional curve. Assume for simplicity that
k = C. We claim that f : (E ⊂ U) → (F ⊂ Bl0 A2) restricts to an isomor-
phism over a neighbourhood of E in the Euclidean topology. Indeed, we
observe that the map E → F is an isomorphism, and the derivative df is an
isomorphism at each point Q ∈ E, so f is an isomorphism near E by the
inverse function theorem. It follows that g : (P ∈ V )→ (0 ∈ A2) restricts to
an isomorphism over B× = B \{P} for some Euclidean neighbourhood B of
P ∈ V . But 0 ∈ A2 is normal, so the restriction to B is also an isomorphism.
We conclude that P ∈ Y is smooth and π : X → Y is the blowup of P ∈ Y .
This completes the proof.

7.7 Decomposition of birational maps

Theorem 7.14. Let f : X 99K Y be a birational map between smooth sur-
faces X and Y . Then there exists a commutative diagram

Z
p

~~~~
~~

~~
~ q

��@
@@

@@
@@

X
f //_______ Y

where p and q are compositions of sequences of blowups.
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Proof. We just need to put our previous results together. By elimination
of indeterminacy for rational maps of surfaces, there exists a sequence of
blowups p : Z → X such that the induced rational map

q = f ◦ p : Z 99K Y

is a morphism. Now consider q : Z → Y . There exists a curve E ⊂ Z such
that E is contracted by q and KZ ·E < 0. So E is a (−1)-curve by Cor. 7.12.
By Castelnuovo’s contractibility criterion, there exists a morphism π : Z →
Z ′ to a smooth surface Z ′ such that π is the blowup of a point P ∈ Z ′

and E = π−1P . Now q : Z → Y factors through Z ′, that is, q = q′ ◦ π
where q′ : Z ′ → Y . Indeed, we certainly have a continuous map q′ : Z ′ → Y
of topological spaces such that q = q′ ◦ π, we just need to show that this
a morphism, that is, regular functions pull back to regular functions. Let
f ∈ OY (U). Then q∗f ∈ OZ(q−1U), and π restricts to an isomorphism

Z \ E ∼−→ Z ′ \ {P}.

So q′∗f ∈ OZ′(q′−1U − {P}). But Z ′ is normal, so q′∗f ∈ OZ′(q′−1U)
as required. It follows by induction that q is the composition of a se-
quence of blowups. (Note that the process must stop, since rkH2(Z ′,Z) =
rkH2(Z,Z)− 1, and rkH2(Z,Z) <∞.) This completes the proof.

Example 7.15. Let X ⊂ P3 be a smooth quadric surface. There is only one
such surface up to automorphisms of P3 — it is the image

(XT = Y Z) ⊂ P3
(X:Y :Z:T )

of the Segre embedding

P1 × P1 ⊂ P3, ((X0 : X1), (Y0 : Y1)) 7→ (X0Y0 : X0Y1 : X1Y0 : X1Y1).

The fibres of the two projections pr1,pr2 : P1×P1 → P1 give two families of
lines in P3 which cover the surface X, with distinct lines in a given family
being disjoint and lines from different families intersecting transversely in
one point.

Let P ∈ X be a point and consider the rational map P3 99K P2 given
by projection from P . In coordinates, if P = (0 : 0 : 0 : 1) ∈ P3 then the
projection is given by

P3 99K P2, (X0 : X1 : X2 : X3) 7→ (X0 : X1 : X2).

The induced rational map f : X 99K P2 is birational. To see this, note that
the preimage of a point Q ∈ P2 is L∩X \{P}, where L is the corresponding
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line in P3 through the point P . This will be a single point unless L is
contained in X, so f is birational. The rational map f is not defined at
P ∈ X: if P ′ approaches P along a smooth curve C ⊂ X then f(P ′)
approaches the point Q corresponding to the tangent line TPC ⊂ P3 to
C at P . However, if π : X̃ → X is the blowup of P , then the composite
f ′ = f ◦ π : X̃ 99K P2 is a morphism. (The same is true whenever we
project from a point on a smooth surface.) Let L1, L2 be the two lines on X
passing through P . Then the strict transforms L′1, L

′
2 ⊂ X̃ are contracted

by f ′, and f ′ : X̃ → P2 is the birational morphism given by blowing up two
distinct points on P2, with exceptional curves L′1, L

′
2.

One can picture this decomposition as follows. The curves (X0 = 0), (Y0 =
0), (X1 = 0), (Y1 = 0) form a cycle of 4 smooth rational curves on X =
P1 × P1 of self-intersection zero. (Note that, if X is a smooth projec-
tive surface, p : X → C is a morphism to a curve, and F is a fibre, then
F 2 = 0. Indeed, the associated 2-cycle F is homologous to any other fi-
bre F ′, that is [F ] = [F ′] ∈ H2(X,Z). So F 2 = F · F ′ = 0.) Let P be
the intersection point (X0 = 0) ∩ (Y0 = 0). Then, in the above notation,
L1, L2 = (X0 = 0), (Y0 = 0). In general, if X is a smooth surface, π : X̃ → X
is the blowup of a point P ∈ X, C is a smooth curve through P ∈ X, and
C ′ ⊂ X̃ is the strict transform of C, then C ′ = π∗C−E and so C ′2 = C2−1.
Thus L′1

2 = L′2
2 = −1. Now we contract the two disjoint curves L′1, L

′
2, and

the remaining curves (the exceptional curve E of π and the inverse images
of the curves (X1 = 0),(Y1 = 0)) map to a set of coordinate hyperplanes on
P2. Note that you can check that the images have self-intersection 1 using
the formula C ′2 = C2 − 1 given above.

Example 7.16. The Cremona transformation is the birational map

P2 99K P2, (X0 : X1 : X2) 7→ (X−1
0 : X−1

1 : X−1
2 ).

It can be decomposed into blowups as follows. Consider the set of coordinate
hyperplanes (Xi = 0), i = 0, 1, 2, in P2. Let π : X̃ → P2 be the blowup of the
3 intersection points. The strict transforms of the coordinate hyperplanes
are (−1)-curves, so can be blown down. We obtain another copy of P2,
with the images of the exceptional curves of π giving a set of coordinate
hyperplanes.

Remark 7.17. A theorem of Castelnuovo–Noether asserts that any birational
map P2 99K P2 can be decomposed into a sequence of Cremona transforma-
tions and automorphisms of P2 (recall Aut P2 = PGL(3)). Algebraically,
this theorem gives a set of generators for the group Aut k(x1, x2) of auto-
morphisms of the field of rational functions in 2 variables.
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Example 7.18. A ruled surface is a smooth projective surface X together
with a morphism f : X → C to a smooth curve C such that every fibre of
F is isomorphic to P1. (Warning: some authors define a ruled surface as a
surface which is birational to a surface of this form.) As observed earlier,
in this situation F 2 = 0. Let P ∈ F ⊂ X be a point and π : X̃ → X the
blowup of P ∈ X. Then the strict transform of F is a (−1)-curve so can
be blown down to obtain another ruled surface f ′ : X ′ → C. The birational
map g : X 99K X ′ is called an elementary transformation of ruled surfaces.

Remark 7.19. If f : X → C and f ′ : X ′ → C ′ are ruled surfaces and g : X 99K
X ′ is a birational map then C ' C ′. If in addition C is not isomorphic to
P1 then there is a commutative diagram

X
g //___

f

��

X ′

f ′

��
C

∼ // C ′

and g can be decomposed into a sequence of elementary transformations.

8 The Kodaira vanishing theorem

If X is a smooth projective variety and L is a line bundle on X then the
Riemann–Roch formula expresses χ(X,L) in terms of topological data as-
sociated to X and L. This means that χ(X,L) is usually easy to compute.
However, we are typically interested in h0(X,L), the dimension of the space
of global sections of L, and

χ(X,L) =
∑

(−1)ihi(L) = h0(L)− h1(L) + · · ·+ (−1)nhn(L)

where n = dimX. So it is very useful to know conditions on L which
imply hi(L) = 0 for all i > 0, since then h0(X,L) = χ(X,L). The Kodaira
vanishing theorem is the most important result of this type.

Theorem 8.1. (Kodaira vanishing) Let X be a smooth projective vari-
ety over k = C of dimension n and D an ample divisor on X (that is,
mD is a hyperplane section of X in some embedding for some m > 0.)
Then H i(X,OX(KX + D)) = 0 for i > 0. Equivalently, by Serre duality,
H i(X,OX(−D)) = 0 for i < n.

Remark 8.2. If X is a smooth projective variety over an algebraically closed
field k of characteristic p > 0 then the analogous statement is false in general.
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The usual proof of this result uses an identification of cohomology classes
in H i(X,OX(KX +D)) with harmonic forms on X of type (n, i) with values
in L = OX(D). See [GH, p. 154].

Alternatively, one can prove the result by considering a cyclic covering
Y → X of order N � 0 defined by L and a section s ∈ Γ(X,LN ), and using
the following results:

(1) H i(X,OX(KX +mD)) = 0 for m� 0 (by Serre vanishing).

(2) The inclusion C ⊂ OY an of the constant sheaf with stalk C in the
sheaf of holomorphic functions on the complex manifold Y an induces
a surjection

H i(Y,C)→ H i(Y,OY ).

(This map is given by projection onto the factor H0,i of the Hodge
decomposition.)

See [KM, p. 62, Thm. 2.47] for details.

9 Characterisation of the projective plane

Recall that we say a divisor D is ample if mD is linearly equivalent to a hy-
perplane section H in some embedding, for some m > 0. Also ρ(X) denotes
the rank of the group NumX of divisors modulo numerical equivalence.

Theorem 9.1. Let X be a smooth projective surface over k = C and suppose
ρ(X) = 1 and −KX is ample. Then X is isomorphic to P2.

Remark 9.2. If ρ(X) = 1 then Num(X) ' Z so either KX is ample, −KX is
ample, or KX is numerically equivalent to 0. Indeed, since X is projective,
we can pick an ample generator H of Num(X) and write KX ≡ mH, then
the 3 cases correspond to m > 0, m < 0, and m = 0. (Note that if H is
ample and D is numerically equivalent to H, then D is ample. This follows
for example from the Nakai–Moishezon criterion for ampleness [Hartshorne,
V.1.10, p.365], [KM, 1.37, p. 31] or Kodaira’s metric characterisation of
ampleness [GH, Prop., p.148, Thm., p. 181]).

Proof of Thm. 9.1. By the Kodaira vanishing theorem applied toD = −KX ,
we have H1(OX) = H2(OX) = 0. The exponential sequence

0→ Z→ OXan → O×Xan → 0
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gives the exact sequence

0→ H1(X,Z)→ H1(OX)→ PicX → H2(X,Z)→ H2(OX)→ · · ·

Thus H1(X,Z) = 0 and c1 : PicX ∼−→ H2(X,Z) is an isomorphism. So
H2(X,Z)/Tors = NumX = Z because ρ(X) = 1 by assumption. We have
H3(X,Z)/Tors = H1(X,Z)∗ = 0 by Poincaré duality, so the Euler number

e(X) :=
∑

(−1)i dimRH
i(X,R) = 1− 0 + 1− 0 + 1 = 3.

So Noether’s formula

χ(OX) =
1
12

(K2
X + e(X))

gives K2
X = 9. The pairing on NumX = H2(X,Z)/Tors is unimodular by

Poincaré duality. So, if H is an ample generator of NumX then H2 = 1,
and KX ≡ −3H (because K2

X = 9 and −KX is ample).
We want to show that the global sections of the line bundleOX(H) define

an isomorphism X
∼−→ P2. (Under this isomorphism, H will correspond to

a hyperplane in P2.) We first compute the dimension of the space of global
sections of OX(H). By Riemann–Roch,

χ(OX(H)) = χ(OX) +
1
2
H · (H −KX) = 1 +

1
2
H · 4H = 3.

If we writeH = KX+D, thenD = H−KX ≡ 4H is ample, soH i(OX(H)) =
0 for i > 0 by Kodaira vanishing. Thus h0(OX(H)) = 3. In particular, we
may assume H is an effective divisor.

Let φ : X 99K P2 be the rational map defined by the global sections
of OX(H). We show that OX(H) is generated by global sections (that is,
for every point P ∈ X, there exists a section s ∈ H0(OX(H)) such that
s(P ) 6= 0), so φ is a morphism. Equivalently, the linear system |H| is
basepoint free. We consider the exact sequence

0→ OX → OX(H)→ OX(H)|H → 0

Since H1(OX) = 0 the restriction map H0(OX(H)) → H0(OX(H)|H) is
surjective. So, it is enough to show that OX(H)|H is generated by global
sections. Now, H is irreducible (because it is a generator of Num(X)) and

2pa(H)− 2 = (KX +H) ·H = −2H ·H = −2
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so pa(H) = 0 and H ' P1. The line bundle OX(H)|H has degree H2 = 1,
so corresponds to the line bundle OP1(1) on P1. In particular, OX(H)|H is
generated by global sections.

The divisor H ⊂ X is the pullback of a hyperplane L ⊂ P2 under the
morphism φ : X → P2, and H2 = 1. It follows that the inverse image of a
general point P = L1 ∩ L2 ∈ P2 is a single point H1 ∩H2 ∈ X. Thus φ is
a birational morphism. But φ is a finite morphism because H is ample (if
C ⊂ X is a curve then H · C > 0, so C is not contracted by φ). So φ is an
isomorphism.

10 Ruled surfaces

A ruled surface f : X → C is a P1-bundle over a curve C for the Zariski
topology. That is, there exists a Zariski open covering U = {Ui} of C and
isomorphisms

f−1Ui
∼ //

f ""E
EEEEEEE Ui × P1

pr1{{ww
ww

ww
ww

w

Ui

Theorem 10.1. Let X be a smooth projective surface over k = C and
f : X → C a morphism to a smooth curve C with connected fibres. Suppose
KX ·F < 0 for F a fibre and ρ(X) = 2. Then f : X → C is a ruled surface.

Proof. Let P ∈ C be a point and let E1, . . . , Er be the irreducible compo-
nents of f−1P . By the fibre F over P ∈ C we mean the divisor with support
f−1P defined as follows. Let t be a local parameter at P ∈ C, then, working
locally over P ∈ C,

F := (f∗t) =
∑

miEi.

Here mi = νEi(f
∗t) is the multiplicity of the component Ei of the fibre F .

Note that a general fibre is irreducible and smooth, and has multiplicity 1.
If F is an irreducible fibre of multiplicity 1, then F ' P1. Indeed,

KX · F < 0 by assumption and F 2 = 0, so

2pa(F )− 2 = (KX + F ) · F < 0.

Thus pa(F ) = 0, KX · F = −2, and F ' P1. Note also that there are no
irreducible fibres of multiplicity greater than one. Indeed, suppose F = mE
with E irreducible, m ≥ 1. Then as above we find KX · E = −2. But
KX · (mE) = KX · F = −2, so m = 1.
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We show that there are no reducible fibres. We use Lem. 10.3 below.
Let F =

∑
miEi be a fibre and H a horizontal curve on X (that is, an

irreducible curve which is not contained in a fibre). Then H,E1, . . . , Er are
linearly independent in Num(X). Indeed, suppose D = aH +

∑
aiEi ≡ 0.

We have Ei · F = 0 for all i (because F is numerically equivalent to any
other fibre F ′, and F ∩ F ′ = ∅) and H · F > 0. So, D · F = 0 gives a = 0.
Now D =

∑
aiEi, and since D2 = 0 we have D = λF for some λ ∈ Q by

Lem. 10.3. Finally D · H = 0 gives λ = 0, so ai = 0 for all i as required.
In our situation ρ(X) := rk Num(X) = 2 by assumption. We deduce that
r = 1, that is, F is irreducible.

Let P ∈ C be a point and F the fibre of f over P . (So by our previous
results F ' P1 is a smooth rational curve of multiplicity 1.) We show
that there exists a Euclidean neighbourhood P ∈ U ⊂ Can of P and an
isomorphism

f−1U
∼ //

f ""E
EE

EE
EE

E U × P1

pr1
{{xx

xx
xx

xx
x

U

An isomorphism as in the diagram is given by (f, g) : f−1U → U × P1

where g : f−1U → P1 is a morphism which restricts to an isomorphism
F

∼−→ P1. (Given such a morphism g, (f, g) is an isomorphism over some
smaller neighbourhood P ∈ U ′ ⊂ U by the inverse function theorem.) The
morphism g corresponds to a line bundle L = g∗OP1(1) on f−1U and sections
s0, s1 ∈ Γ(f−1U,L), si = g∗Xi, such that L|F = OF (1) and s0|F , s1|F form a
basis of Γ(F,OF (1)). So, we need to show that (1) we can lift the line bundle
OF (1) on F to a line bundle L on a tubular neighbourhood Y := f−1U of
the fibre F in X, and (2) we can lift the global sections of OF (1) to sections
of L over Y . We will give two proofs of these facts. The first uses the
behaviour of cohomology under restriction to a fibre [Hartshorne, III.12.11],
and is more widely applicable. The second is more elementary.

From the exponential sequences on Y = f−1U and F , we obtain a com-
mutative diagram

· · · −−−−→ H1(OY ) −−−−→ PicY −−−−→ H2(Y,Z) −−−−→ H2(OY ) −−−−→ · · ·y y y y
· · · −−−−→ H1(OF ) −−−−→ PicF −−−−→ H2(F,Z) −−−−→ H2(OF ) −−−−→ · · ·

The fibre F ' P1 so H1(OF ) = H2(OF ) = 0, and PicF ∼→ H2(F,Z) = Z.
The space Y is a tubular neighbourhood of F , so the inclusion F ⊂ Y
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is a homotopy equivalence and the restriction map H2(Y,Z) → H2(F,Z)
is an isomorphism. Finally, since H i(OF ) = 0 for i > 0, it follows that
H i(OY ) = 0 for i > 0 (shrinking U if necessary) by [Hartshorne, III.12.11].
So the restriction map PicY → PicF is an isomorphism. In particular,
there exists a (unique) line bundle L on Y such that L|F = OF (1). Now we
lift sections. Consider the exact sequence

0→ L⊗OY (−F )→ L → L|F → 0.

Note that the ideal OY (−F ) of F in Y is generated by a local parameter t
at P ∈ C (shrinking U if necessary), in particular OY (−F ) ' OY . We can
thus rewrite the exact sequence as

0→ L → L → L|F → 0

where the first arrow is given by multiplication by t. Now consider the
associated long exact sequence of cohomology

· · · → H0(Y,L)→ H0(F,L|F )→ H1(Y,L)→ · · ·

Since H1(F,L|F ) = H1(F,OF (1)) = 0, it follows that H1(Y,L) = 0 by
[Hartshorne, III.12.11] again. Thus the restriction map

H0(Y,L)→ H0(F,L|F ) = H0(F,OF (1))

is surjective. So, we can lift a basis of H0(F,OF (1)) to sections s0, s1 of the
line bundle L over Y as required.

We give a more elementary proof of the two facts needed to show that
the fibration f : X → C is locally trivial in the Euclidean topology, given
that each fibre is a smooth rational curve of multiplicity one. Let P ∈ C
be a point and F ' P1 the fibre over P . We first show that there exists
a line bundle L on X such that L|F ' OF (1). We have KX · F < 0 and
F 2 = 0, so KX is not linearly equivalent to an effective divisor (because if
D is an effective divisor, C is an irreducible curve, and D · C < 0, then C
is contained in the support of D and C2 < 0). Equivalently, h0(KX) = 0.
ThusH2(X,C) = H1,1, and so NumX = H2(X,Z)/Tors. Now, by Poincaré
duality, the intersection product gives an isomorphism NumX ' (NumX)∗.
The image of the map

θ : NumX → Z, D 7→ D · F

is a subgroup dZ ⊂ Z, some d ∈ N. Then 1
dθ ∈ (NumX)∗ corresponds to

some G ∈ NumX, that is, D · F = d(D ·G) for all D. Thus F ≡ dG. Now
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KX ·F = −2, so d = 1 or 2. Also, for X a smooth projective surface and D
a divisor on X, D2 −D ·KX is even. Indeed,

D2 −D ·KX = 2(χ(OX(D))− χ(OX))

by the Riemann–Roch formula. We deduce that d = 1, that is, there exists
a divisor H such that H · F = 1. Let L = OX(H + rF ) for some r ∈ Z,
then L|F ' OF (1). We next show that, for r � 0, the map Γ(X,L) →
Γ(F,OF (1)) on global sections is surjective. Consider the exact sequence of
sheaves on X

0→ OX(H + (r − 1)F )→ OX(H + rF )→ OF (1)→ 0

and the associated long exact sequence of cohomology

H0(OX(H + rF )) → H0(OF (1)) →
H1(OX(H + (r − 1)F )) → H1(OX(H + rF )) → 0

(10)

(here we used H1(OF (1)) = 0). Now, the space H1(OX(H)) is finite dimen-
sional, and the map

θr : H1(OX(H + (r − 1)F ))→ H1(OX(H + rF ))

is surjective for each r by the exact sequence (10). Hence θr is an isomor-
phism for r � 0. So the restriction map H0(OX(H + rF ))→ H0(OF (1)) is
surjective for r � 0 by (10).

Finally, we show that the fibration f : X → C is locally trivial in the
Zariski topology. Recall that X is a P1-bundle over C for the Euclidean
topology. We show that X → C is the projectivisation of a rank 2 (analytic)
vector bundle E on Can. Then by GAGA, E is actually an algebraic vector
bundle on C. It follows that f : X → C is a P1-bundle for the Zariski
topology. We have an exact sequence of sheaves of (non-abelian) groups on
Can (we omit the superscript “an” in what follows)

0→ O×C → GL2(OC)→ PGL2(OC)→ 0.

Note that this is a central extension of sheaves of groups: that is, the kernel
is abelian and contained in the centre of the second term. In this situation,
we obtain a long exact sequence of cohomology

· · · → H1(O×C )→ H1(GL2(OC))→ H1(PGL2(OC))→ H2(O×C ). (11)

This sequence does not continue further to the right (it is not possible to
make sense of Cech cohomologyH i of a sheaf of nonabelian groups for i ≥ 2).
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The set H1(GL2(OC)) is the set of isomorphism classes of rank 2 vector
bundles over C. This is analogous to the identification PicC ' H1(O×C ).
Explicitly, if E is a rank r vector bundle over a complex manifold X, let
U = {Ui} be an open covering of X and

φi : E|Ui

∼−→ Ui × Cr

local trivialisations. Then

φj ◦ φ−1
i : Uij × Cr ∼−→ Uij × Cr, (x, v) 7→ (x, gij(x) · v),

where gij ∈ Γ(Uij ,GLr(OX)) are the transition functions. The gij satisfy
the cocycle condition gjkgij = gik, equivalently, gjkgijg

−1
ik = 1 (note that

the order of the factors is important here for r > 1). If we change the
trivialisations φi by multiplication by fi ∈ Γ(Ui,GLr(OX)), then the new
transition functions are given by g′ij = fjgijf

−1
i . The Cech cohomology set

H1(U ,GLr(OX)) with respect to the open covering U is by definition the set
of tuples (gij) ∈

⊕
Γ(Uij ,GLr(OX)) satisfying gjkgijg

−1
ik = 1, modulo the

equivalence relation (gij) ∼ (fjgijf
−1
i ) for all (fi) ∈

⊕
Γ(Ui,GLr(OX)). The

Cech cohomology set H1(X,GLr(OX)) is obtained by taking the direct limit
lim−→H1(U ,GLr(OX)) over all open coverings U as usual. By the previous
discussion, this set is identified with the set of isomorphism classes of rank
r vector bundles over X. Returning to our example, a similar analysis
shows that the set H1(PGL2(OC)) is the set of isomorphism classes of P1-
bundles over C (because Aut P1

C = PGL2(C)). The map H1(GL2(OC)) →
H1(PGL2(OC)) sends a vector bundle to its projectivisation. We claim that
this map is surjective. Equivalently, by the exact sequence (11), H2(O×C ) =
0. The exponential sequence on C

0→ Z→ OC → O×C → 0

yields the long exact sequence of cohomology

· · · → H2(OC)→ H2(O×C )→ H3(C,Z)→ · · ·

Now H2(OC) = 0 because OC is coherent and dimCC = 1 < 2, and
H3(C,Z) = 0, so H2(O×C ) = 0 as required. Thus the P1-bundle f : X → C
is the projectivisation of a rank 2 vector bundle over C. This completes the
proof.

Remark 10.2. We can make the last step of the proof more explicit as
follows. Let U = {Ui} be an open covering of C by small discs and let
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hij ∈ PGL2(OX(Uij)) be transition functions for the P1-bundle f : X → C
with respect to this covering. Lift hij to gij ∈ GL2(OC(Uij)) . Then
gjkgijg

−1
ik = αijk ∈ O×C (Uijk) (because hjkhijh

−1
ik = 1 in PGL2(OC(Uijk))).

One checks that α = (αijk) is a Cech 2-cocycle for O×C . Since H2(O×C ) = 0
we can write α = dβ, that is, αijk = βjkβijβ

−1
ik . Now define g′ij = gijβ

−1
ij ,

then g′ij is a lift of hij and g′jkg
′
ijg

′
ik
−1 = 1. Thus the g′ij define a vector

bundle E over C such that the projectivisation of E is isomorphic to the
P1-bundle f : X → C.

The proof of the following lemma is similar to the proof of negativity of
the contracted locus for a birational morphism.

Lemma 10.3. [Shafarevich, p. 270, Thm. 4] Let X be a smooth projective
surface and f : X → C a morphism to a smooth curve C with connected
fibres. Let F =

∑r
i=1miEi be a fibre of f , and D =

∑
aiEi, ai ∈ Z. Then

D2 ≤ 0, with equality iff D = λF for some λ ∈ Q.

10.1 Invariants of ruled surfaces

Let f : X → C be a ruled surface (a P1-bundle over a curve C).
We first observe that the map f∗ : π1(X)→ π1(C) is an isomorphism. In

general, if p : E → B is a (topological) fibre bundle with fibre F , then there
is a homotopy long exact sequence

· · · → π1(F )→ π1(E)→ π1(B)→ π0(F )→ · · ·

(recall that π0(X) is the set of connected components of X). See [Hatcher,
p. 376, Thm. 4.41]. For example, given a loop γ in B based at a point b ∈ B,
we can lift it to a path in E, whose end points lie in the fibre F = p−1b.
Then if F is connected we can join the end points by a path in F to obtain a
loop γ̃ in E such that p∗γ̃ = γ. This shows that π1(E)→ π1(B) is surjective
if π0(F ) is trivial. In our situation, the map f : X → C is a fibre bundle with
fibre F ' P1. In particular, F is connected and π1(F ) = 0. So f∗ : π1(X)→
π1(C) is an isomorphism as claimed. Passing to abelianisations, we deduce
that f∗ : H1(X,Z)→ H1(C,Z) is an isomorphism.

We show that the pullback map on 1-forms

f∗ : Γ(ΩC)→ Γ(ΩX)

is an isomorphism. We give two proofs. The first proof uses analytic meth-
ods. Let η ∈ Γ(ΩX) be a global 1-form on X. Then the restriction η|F of η
to a fibre F equals zero, because F ' P1 and Γ(ΩP1) = 0. Now let P ∈ C
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be a point and V ⊂ Can a small disc about P . Let F = f−1P be the fibre
over P and U = f−1V the tubular neighbourhood of F over V . Then U is
homotopy equivalent to F , so H1(U,Z) = 0. Also the 1-form η is closed by
Prop. 10.4 below. So we can define a holomorphic function g : U → C such
that dg = η|U by

g(P ) =
∫ P

P0

η

where P0 ∈ F is a fixed basepoint and the notation
∫ P
P0

means the integral
over some path from P0 to P in U . (The choice of path γ is irrelevant.
Indeed if γ, γ′ are two such paths then γ − γ′ = ∂β for some 2-cycle β
because H1(U,Z) = 0. So∫

γ
η −

∫
γ′
η =

∫
∂β
η =

∫
β
dη = 0

using dη = 0.) Now g is constant along fibres because (as noted above)
η|G = 0 for any fibre G. So g = f∗h is the pullback of a holomorphic
function h on V ⊂ C, and η|U = dg = f∗dh is the pullback of a holomorphic
1-form ω = dh on V . Now, since ω is uniquely determined by η, these local
1-forms patch to give a global 1-form ω on C such that η = f∗ω, as required.
The second proof is algebraic. In general, suppose given smooth varieties X,
Y , and a submersion (or smooth morphism) f : X → Y , that is, a morphism
such that the derivative

dfP : TX,P → TY,f(P )

of f at P is surjective for all P ∈ X. (Here TX,P denotes the tangent space
to X at P , or, equivalently, the fibre of the tangent bundle TX over P ∈ X.)
Then we have an exact sequence of vector bundles on X

0→ TX/Y → TX → f∗TY → 0

where the map TX → f∗TY is the derivative of f and the kernel TX/Y is
the bundle of tangent vectors on X which are parallel to the fibres of f .
Dualising we obtain an exact sequence

0→ f∗ΩY → ΩX → ΩX/Y → 0,

and so an exact sequence of k-vector spaces

0→ Γ(f∗ΩY )→ Γ(ΩX)→ Γ(ΩX/Y )

57



Note that ΩX/Y |F = ΩF for F a fibre. So, in our example f : X → C,
we find Γ(ΩX/C) = 0 because Γ(ΩF ) = 0 (cf. the first proof). Thus
Γ(f∗ΩC) → Γ(ΩX) is an isomorphism. Now Γ(f∗ΩC) = Γ(f∗f∗ΩC) by the
definition of f∗ for sheaves, f∗f∗ΩC = ΩC⊗f∗OX by the projection formula
[Hartshorne, p. 124, Ex. II.5.1(d)], and f∗OX = OC by Stein factorisation
[Hartshorne, p. 280, III.11.5]. So Γ(f∗ΩC) = Γ(ΩC) and Γ(ΩC)→ Γ(ΩX) is
an isomorphism as required.

Proposition 10.4. Let X be a smooth complex projective variety (or, more
generally, a compact Kähler manifold). Then a holomorphic k-form η on X
is closed. Moreover, the map

H0(Ωk
X)→ Hk

dR(X,C), η 7→ [η]

is the natural inclusion

H0(Ωk
X) = Hk,0 ⊂ Hk

dR(X,C).

Proof. This follows from the description of the Hodge decomposition in
terms of harmonic forms. See [CMSP, p. 95, Prop. 3.1.1].

Remark 10.5. Note that it is essential that X is compact. For example, the
holomorphic 1-form z1dz2 on C2

z1,z2
is not closed.

In general, if f : X → B is a (topological) fibre bundle with fibre F , then

e(X) = e(B)e(F )

where as usual e(X) denotes the Euler number. (Proof: By decomposing
B into pieces and using the Mayer–Vietoris sequence we can assume that
f is a trivial bundle, so X ' B × F . Recall that the Euler number can be
computed from a cellular subdivision of X as e(X) =

∑
(−1)iNi where Ni

is the number of cells of dimension i. Now taking triangulations of B and F
we obtain a cellular subdivision of X = B×F with cells σ× τ where σ and
τ are simplices in the triangulations of B and F respectively. We deduce
that e(X) = e(B)e(F ).) In our example f : X → C we obtain

e(X) = e(C)e(F ) = (2− 2g)(2) = 4− 4g (12)

where g = g(C) is the genus of C. Now we can compute all the Betti
numbers bi(X) = dimRH

i(X,R). Recall that H1(X,Z) → H1(C,Z) is an
isomorphism, so b1(X) = b1(C) = 2g. Also, we always have b0 = 1, and
bi = b4−i by Poincaré duality. So

e(X) :=
∑

(−1)ibi = 2− 2b1 + b2 = 2− 4g + b2

58



and combining with (12) we obtain b2 = 2. We also note that the inte-
gral homology and cohomology of X has no torsion. Indeed, H1(X,Z) '
H1(C,Z) ' Z2g is torsion free, and it follows that Hi(X,Z) and H i(X,Z)
are torsion free for each i by the universal coefficient theorem and Poincaré
duality.

As noted earlier, since KX · F < 0 and F 2 = 0, we have h0(KX) =
0. (More generally, h0(nKX) = 0 for all n > 0.) In particular, H2,0 =
h0(KX) = 0, so H2(X,C) = H1,1 and

NumX = H1,1 ∩H2(X,Z)/Tors = H2(X,Z).

Thus NumX ' Z2, that is, ρ(X) = 2. We describe a basis of NumX. We
observe that, since f : X → C is a P1-bundle for the Zariski topology on C,
there exists a section S of f . (Strictly speaking a section of f : X → C is a
morphism s : C → X such that f ◦ s = idC . Here we identify a section with
its image S = s(C) ⊂ X.) Indeed, let U ⊂ C be a Zariski open subset of
C such that the restriction X|U is a trivial P1-bundle, that is, there is an
isomorphism

φ : X|U
∼−→ U × P1

over U . Now let SU be a section of X|U (for example, SU = φ−1(U × {P})
for some fixed P ∈ P1), and define S = SU ⊂ X, the closure of SU in X.
Then S is a section of f . Let F be a fibre of f . We claim that S, F is a basis
of NumX. Indeed, it suffices to observe that the determinant of the matrix(

S2 S · F
S · F F 2

)
=

(
? 1
1 0

)
equals −1.

Remark 10.6. Note that S2 mod 2 is a topological invariant of F . Indeed,
S2 is even iff the intersection form on NumX = H2(X,Z) is even, that is,
x2 is even for all x ∈ H2(X,Z).

For example, the (holomorphic or algebraic) classification of ruled sur-
faces f : X → C over C = P1 can be described as follows. For each n there
exists a ruled surface Fn → P1 with a section S ⊂ Fn such that S2 = −n. If
n > 0 then the section S is the unique section with negative self-intersection.
(If n = 0 then f : F0 → P1 is given by pr2 : P1 × P1 → P1, any fibre S of the
other projection pr1 : P1 × P1 → P1 is a section of f with S2 = 0, and any
other section has strictly positive self-intersection.) Every ruled surface over
P1 is isomorphic to Fn for some n. Now we describe the topological clas-
sification: The ruled surfaces Fn, Fm are homeomorphic iff n ≡ m mod 2.
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In fact, if n ≡ m mod 2, and n > m, there is a family X → ∆ of smooth
surfaces over the disc ∆ = (|t| < 1) ⊂ C such that Xt ' Fm for t 6= 0 and
X0 ' Fn.

11 Complex tori

Let V be a complex vector space of dimension n. Let L ⊂ V be a lattice,
that is, L ' Z2n is a free abelian group of rank 2n and the map

L⊗Z R→ VR

is an isomorphism of R-vector spaces. (Here we write VR for V regarded as
an R-vector space.) Then we say X := V/L is a complex torus. The space
X is a compact complex manifold, and the underlying smooth manifold XR
is diffeomorphic to the real torus (S1)2n of dimension 2n. (Proof: picking
a basis of L gives an identification XR = VR/L = (R/Z)2n = (S1)2n.) A
complex torus X = V/L is a complex Lie group, with group law induced by
addition in V .

We say a complex torus X is an abelian variety if it is projective, that
is, admits an embedding in projective space. This is not always the case for
n > 1.

The following lemma reduces the study of morphisms of complex tori to
linear algebra.

Lemma 11.1. Let X = V/L, X ′ = V ′/L′ be complex tori, and f : X → X ′

a morphism. Then f is induced by an affine linear function f̃ : V → V ′ such
that f̃(L) ⊂ L′.

Proof. The map f : X → X ′ lifts to a map f̃ : V → V ′ because V is simply
connected and V ′ → X ′ is a covering space. Pick coordinates wi, zj on V ′,
V , and consider the derivative df = ( ∂fi

∂zj
) of f in these coordinates. Each

matrix entry ∂fi

∂zj
is a holomorphic function on V which is periodic with

respect to L. In particular it is bounded, and therefore constant (Liouville’s
theorem). So df is a constant matrix. It follows that f is affine linear (that
is, of the form f(x) = Ax+ b), as required.

Let X = V/L be a complex torus. Then the quotient map V → X
is the universal cover of X, with group π1(X) = L ' Z2n. In particular
H1(X,Z) = L ' Z2n. More generally, Hk(X,Z) = ∧kL ' Z2n. We sketch
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two proofs of this fact. Write m = 2n, so X ' (S1)m. If X and Y are two
topological spaces, then the Künneth formula asserts that

Hk(X × Y,Q) =
⊕

i+j=k

Hi(X,Q)⊗Hj(Y,Q)

for each k. Moreover, if Hi(X,Z) and Hj(Y,Z) are torsion free for all i, j,
then the equality holds with Z-coefficients. Using this inductively we can
compute Hk((S1)m,Z). Alternatively, we can use an explicit cell decom-
position of (S1)m as follows. Consider the standard cell decomposition of
S1 given by one 1-cell and one 0-cell, where the two ends of the 1-cell (an
interval) are identified with the 0-cell to form S1. We take the product de-
composition of (S1)m given by this cell decomposition of each factor. The
cells are given by ei1×· · ·×eik , where 1 ≤ i1 < · · · < ik ≤ m, and ei denotes
the 1-cell in the ith factor. Observe that each cell defines a cycle in (S1)m,
that is, it has no boundary. (It may help to think of (S1)m as obtained from
the unit cube of dimension m in Rm by identifying opposite faces. Then the
cell ei1 × · · · × eik is a face of the cube of dimension k, which maps to a real
k-torus (S1)k ⊂ (S1)m.) Now it follows that the homology Hk(X,Z) is a
free abelian group with basis ei1 × · · · × eik , 1 ≤ i1 < · · · < ik ≤ m. (Note:
We can compute homology using a cell decomposition in the same way as
for a triangulation.)

Next we consider de Rham cohomology. Let e1, . . . , em be a basis of L,
and x1, . . . , xm the associated real coordinates on VR. Then dxi1 ∧ · · · ∧dxik

is a closed smooth k-form on VR for 1 ≤ i1 < · · · < ik ≤ m, and these forms
give the basis of Hk

dR(X,R) = Hk(X,R)∗ dual to the basis {ei1×· · ·×eik} of
Hk(X,R) described above. Without choosing a basis, Hk

dR(X,R) = ∧kV ∗R .
We describe the Hodge decomposition for a complex torus. (Note: al-

though a complex torus is not necessarily projective, it is always Kähler, so
the Hodge decomposition theorem holds.) Recall that Hk

dR(X,R) = ∧kV ∗R .
So

Hk
dR(X,C) = ∧kV ∗R ⊗R C = ∧k(V ∗ ⊕ V̄ ∗) =

⊕
p+q=k

∧pV ∗ ⊗ ∧qV̄ ∗.

In coordinates, if z1, . . . , zn are complex coordinates on V , then V ∗ has basis
{dzi} and V̄ ∗ has basis {dz̄j}. So ∧pV ∗ ⊗∧qV̄ ∗ has basis dzi1 ∧ · · · ∧ dzip ∧
dz̄j1 ∧ · · · ∧ dz̄jq , where 1 ≤ i1 < · · · < ip ≤ n and 1 ≤ j1 < · · · < jq ≤ n. It
follows that

Hp,q = ∧pV ∗ ⊗ ∧qV̄ ∗.

Since X = V/L is a complex Lie group, the tangent bundle TX is trivial,
with fibre TX,0 = V , the tangent space at the identity 0 ∈ X. That is,
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TX = OX ⊗ V ' O⊕n
X . If z1, . . . , zn are complex coordinates on V , then

∂
∂z1

, . . . , ∂
∂zn

is a basis of TX . Similarly, ΩX = T ∗X = OX ⊗ V ∗ ' O⊕n
X ,

generated by dz1, . . . , dzn, and ωX = ∧nΩX = OX ⊗∧nV ∗ ' OX , generated
by dz1 ∧ · · · ∧ dzn. In particular, the canonical divisor KX = 0.

11.1 Projective embeddings of complex tori

We say a compact complex manifold X is projective if it admits a closed
embedding in complex projective space PN

C . (Then, according to Chow’s
theorem [GH, p. 167], X ⊂ PN

C is defined by homogeneous polynomial equa-
tions, so is the complex manifold associated to a smooth complex projective
variety.)

A necessary condition for a compact complex manifold to be projective
is that the group NumX of numerical equivalence classes of line bundles on
X is nontrivial. Indeed, if H is a hyperplane section of X in some projective
embedding then the line bundle OX(H) is not numerically trivial.

Now let X = V/L be a complex torus. Then

NumX = H1,1 ∩H2(X,Z)/Tors = V ∗ ⊗ V̄ ∗ ∩ ∧2L∗.

Equivalently, a class in NumX is given by a skew Z-bilinear map

φ : L× L→ Z

such that the skew R-bilinear map

φR : VR × VR → R

obtained by extension of scalars from Z to R satisfies

φR(iv, iw) = φR(v, w) (13)

for all v, w ∈ V . To see this, recall the decomposition

∧2L∗ ⊂ ∧2L∗⊗Z C = ∧2V ∗R ⊗R C = ∧2(V ∗⊕ V̄ ∗) = ∧2V ∗⊕V ∗⊗ V̄ ∗⊕∧2V̄ ∗,

where
V ∗R ⊗R C = HomR(V,C) = V ∗ ⊕ V̄ ∗

is the decomposition of R-linear forms V → C into C-linear and C-antilinear
forms. Now ψ(iu, iv) = −ψ(u, v) if ψ ∈ ∧2V ∗ or ψ ∈ ∧2V̄ ∗ and ψ(iu, iv) =
ψ(u, v) if ψ ∈ V ⊗ V ∗. So the condition (13) is equivalent to φR ∈ V ⊗ V ∗.
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A skew R-bilinear form φ : VR × VR → R such that φ(iu, iv) = φ(u, v)
corresponds to a hermitian form h : V × V → C with φ = − Imh. Indeed,
recall that h : V × V → C is hermitian if h(λu, v) = λh(u, v), h(u, λv) =
λ̄h(u, v), and h(v, u) = h(u, v) for u, v ∈ V , λ ∈ C. So, writing h = g − iφ
where g and φ are R-valued, we find g : VR × VR → R is a symmetric R-
bilinear form and φ : VR × VR → R is a skew R-bilinear form. Moreover,

g(u, v) = Reh(u, v) = Imh(iu, v) = −φ(iu, v)

and
φ(iu, iv) = − Imh(iu, iv) = − Imh(u, v) = φ(u, v).

Conversely, given φ : VR×VR → R a skew R-bilinear form such that φ(iu, iv) =
φ(u, v), we define h = g− iφ where g(u, v) := −φ(iu, v), then h : V ×V → C
is hermitian.

Theorem 11.2. Let X = V/L be a complex torus. Then X is projective iff
there exists φ ∈ NumX such that the corresponding hermitian form h : V ×
V → C is positive definite.

We give a brief sketch of the proof. Given φ ∈ NumX, let L ∈ PicX
be a line bundle with numerical equivalence class φ. One proves that L is
ample iff the hermitian form h associated to φ is positive definite. The first
proof uses the Kodaira embedding theorem, which provides a differential
geometric characterisation of ample line bundles. See [GH, p. 181]. The
second proof is more direct: if h is positive definite, we explicitly construct
global sections of powers of L given by holomorphic functions θ : V → C
(called theta functions) which satisfy transformation laws of the form

θ(z + λ) = eλ(z)θ(z)

for λ ∈ L, where the multipliers eλ(z) are nowhere zero holomorphic func-
tions on V which give transition functions for the line bundle. (The theta
functions are obtained as power series in qj = e2πizj , j = 1, . . . , n, where
z1, . . . , zn are appropriate complex coordinates on V . In this setup the pos-
itive definiteness of h implies that the power series converge.) Finally one
proves that Lk defines an embedding for k ≥ 3 using the theta functions
(Lefschetz’ theorem). See [GH, p. 317–324].

Example 11.3. Recall first that if E is a smooth projective complex curve of
genus 1 then E is a complex torus of dimension 1, E = C/Z⊕ Zτ , and if L
is a line bundle on E of degree 3 then L defines an embedding E ⊂ P2 of E
as a smooth plane cubic curve.
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If now X = V/L is a complex torus of dimension 2 and L is an ample
line bundle on X of degree L2 = 2 (this is the minimum possible degree),
then L⊗3 defines an embedding X ⊂ P8 of codimension 6. In the special
case that X = E1 × E2 is the product of two elliptic curves, we can take
L = pr∗1 L1 ⊗ pr∗2 L2 where Li is a line bundle of degree 1 on Ei. Then the
embedding X ⊂ P8 defined by L⊗3 is given by the embeddings Ei ⊂ P2

defined by L⊗3
i and the Segre embedding P2 × P2 ⊂ P8, that is,

X = E1 × E2 ⊂ P2 × P2 ⊂ P8

Note that an embedded complex torus X ⊂ PN of dimension n > 1 is
never a complete intersection. This follows from the Lefschetz hyperplane
theorem [GH, p. 156], which shows (in particular) that a complete intersec-
tion X ⊂ PN of dimension n > 1 has π1(X) ' π1(PN ) = 1. (Alternatively,
one can show algebraically that a complete intersection X ⊂ PN of dimen-
sion n > 1 has h1(OX) = 0.)

11.2 The Albanese variety

Let X be a smooth complex projective variety (or, more generally, a com-
pact Kähler manifold). The Albanese variety AlbX is the complex torus of
dimension q = h0(ΩX) given by

AlbX := Γ(ΩX)∗/H1(X,Z).

Here the map H1(X,Z)→ Γ(ΩX)∗ is given by integration:

H1(X,Z)→ Γ(ΩX)∗, γ 7→
(
ω 7→

∫
γ
ω

)
.

Note that the map
H1(X,Z)⊗ R→ Γ(ΩX)∗

is equal to the composition

H1(X,R) = H1
dR(X,R)∗ ⊂ H1

dR(X,C)∗ = H1,0∗ ⊕H0,1∗ → H1,0∗

where the last map is the projection onto the first factor. This is an iso-
morphism of R-vector spaces: the dimensions are equal, and it is injective
because α = α1,0 + α0,1 7→ α1,0 and α0,1 = α1,0 since α is real. So the
Albanese variety is a complex torus as claimed.
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The Albanese morphism α : X → AlbX is defined as follows. Choose a
basepoint P0 ∈ X. We define

α : X → AlbX, P 7→
(
ω 7→

∫ P

P0

ω

)
.

Changing the choice of basepoint corresponds to composing α with a trans-
lation of AlbX

tv : AlbX → AlbX, x 7→ x+ v.

We describe the Albanese morphism in coordinates. Let ω1, . . . , ωq be a
basis of the complex vector space Γ(ΩX) and γ1, . . . , γ2q a basis of the free
abelian group H1(X,Z)/Tors. Then AlbX = Cq/L where L ⊂ Cq is the
lattice generated by the vectors(∫

γi

ω1, . . . ,

∫
γi

ωq

)
, 1 ≤ i ≤ 2q,

and α : X → AlbX is the map

α : X → Cq/L, P 7→
(∫ P

P0

ω1, . . . ,

∫ P

P0

ωq

)
If f : X → Y is a morphism between smooth complex projective varieties,

then there is a commutative diagram

X
αX−−−−→ AlbXyf

yAlb f

Y
αY−−−−→ AlbY

(14)

where the morphism Alb f : AlbX → AlbY is defined as follows. We have
the pullback map f∗ : Γ(ΩY ) → Γ(ΩX) on 1-forms. The dual (f∗)∗ of this
map is compatible with the pushforward map f∗ : H1(X,Z)→ H1(Y,Z) on 1-
cycles (that is,

∫
γ f

∗ω =
∫
f∗γ ω). So (f∗)∗ defines a morphism Alb f : AlbX →

AlbY .
The Albanese morphism α : X → AlbX satisfies the following universal

property: if β : X → T is a morphism from X to a complex torus, then
there exists a unique morphism f : AlbX → T such that β = f ◦α. Indeed,
if T is a complex torus, then αT : T → AlbT is an isomorphism. Now the
existence of f follows from the functoriality (14) of Alb. To get uniqueness,
observe that the pullback map on 1-forms

α∗ : Γ(ΩAlb X)→ Γ(ΩX)
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is an isomorphism. Thus f∗ : Γ(ΩT ) → Γ(ΩAlb X) is uniquely determined,
equivalently, f : AlbX → T is uniquely determined up to a translation.
Finally the translation is determined by the equality β = f ◦ α.

The image α(X) affinely generates AlbX as a group. That is, the differ-
ences α(x)− α(y) for x, y ∈ X generate AlbX. Indeed, as observed above,
the pullback map α∗ on 1-forms is an isomorphism. This shows that α(X)
is not contained in a translate of a proper subtorus of AlbX. In particular,
if q(X) 6= 0, then α(X) is not a point.

Example 11.4. Let f : X → C be a ruled surface. We already observed that
f∗ : Γ(ΩC)→ Γ(ΩX) and f∗ : H1(X,Z)→ H1(C,Z) are isomorphisms. Thus
Alb f : AlbX → AlbC is an isomorphism. Using this, we can identify the
Albanese morphism αX : X → AlbX with the composition of f and the
Albanese morphism αC : C → AlbC.

Now, for a curve C the Albanese morphism αC can be identified with
Abel–Jacobi morphism

C → Pic0C, P 7→ OC(P − P0)

via a canonical isomorphism Pic0C ' AlbC, where P0 ∈ C is a fixed
basepoint. See [GH, p. 224–237]. Here we only describe the isomorphism
Pic0C ' AlbC. Recall that

Pic0C = H1(OC)/H1(C,Z) = H0,1/H1(C,Z)

by the exponential sequence, and

AlbC = Γ(ΩC)∗/H1(C,Z) = (H1,0)∗/H1(C,Z)∗.

The cup product
∪ : H1(C,Z)×H1(C,Z)→ Z

defines an isomorphism H1(C,Z) ∼→ H1(C,Z)∗. The bilinear form

b : H0,1 ×H1,0 → C, (ω, η) 7→
∫

X
ω ∧ η

is non-degenerate (by Poincaré duality) and so defines an isomorphismH0,1 ∼→
(H1,0)∗. These two isomorphisms are compatible and give the desired iso-
morphism Pic0C ' AlbC. To see the compatibility, note that the map
H1(C,R)→ H0,1 is given by ω = ω0,1+ω0,1 7→ ω0,1, and similarlyH1(C,R)→
H1,0 is given by η = η1,0+η1,0 7→ η1,0. The map of dual spaces H1(C,R)∗ →
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(H1,0)∗ is given by θ = θ1,0 + θ1,0 7→ θ1,0, and so θ(η) = θ1,0(η1,0) +
θ1,0(η1,0) = 2 Re θ1,0(η1,0). Now

[ω] ∪ [η] =
∫

X
ω ∧ η =

∫
X
ω0,1 ∧ η1,0 + ω0,1 ∧ η1,0

= 2Re
∫

X
ω0,1 ∧ η1,0 = 2Re b(ω0,1, η1,0),

so the functional θ = ([ω] ∪ (·)) ∈ H1(C,R)∗ corresponds to the functional
b(ω0,1, ·) ∈ (H1,0)∗, as required.

The Albanese morphism for a curve C is an embedding if g(C) > 0. (If
g(C) = 0 then C ' P1 and AlbC is a point.) Indeed, αC is injective as a
map of sets by the above identification of the Albanese morphism with the
Abel–Jacobi map: if αC(P ) = αC(Q) then P ∼ Q, so P = Q because C
is not isomorphic to P1. Also, by the fundamental theorem of calculus, the
derivative of αC at a point P ∈ C is given in coordinates by

(dαC)P = (ω1, . . . , ωq)

where ω1, . . . , ωq is a basis of Γ(ΩC). Now KC is basepoint free by Riemann–
Roch: for P ∈ C a point we have

h0(KC − P )− h0(P ) = 1− g + (2g − 2− 1) = g − 2

and h0(P ) = 1 since C is not isomorphic to P1, so h0(KC − P ) = g − 1 =
h0(KC)− 1. So (dαC)P 6= 0 for all P ∈ C, and αC is an embedding.

Remark 11.5. If X is a smooth complex projective variety then AlbX is pro-
jective. In fact one can explicitly write down an ample class φ ∈ Num(AlbX)
in terms of an ample class on X. Alternatively, consider the map

αk : Xk = X × · · · ×X → AlbX, (x1, . . . , xk) 7→ α(x1) + · · ·+ α(xk).

One shows that αk is surjective for large k. Then, since AlbX is Kähler and
is covered by a projective variety, it follows from a result of Moishezon that
AlbX is projective. See [Voisin, p. 298, Lem. 12.11, Cor. 12.12].

12 K3 surfaces

A K3 surface is a compact complex surface such that KX = 0 and h1(OX) =
0. (The name K3 refers to Kummer, Kähler, and Kodaira.) We do not
assume that X is algebraic.

The main results are the following:
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(1) Any 2 K3’s are diffeomorphic as smooth manifolds (Kodaira).

(2) Every K3 is a Kähler manifold, so the Hodge decomposition theorem
holds (Siu).

(3) The Torelli theorem for K3 surfaces: an explicit description of the
moduli space of K3 surfaces in terms of the Hodge decomposition
(Piatetski-Shapiro–Shafarevich).

Remark 12.1. The Torelli theorem for K3s is so called because it is analogous
to the Torelli theorem for curves. See [GH, p. 359].

We give some examples of K3 surfaces. We first consider complete inter-
sections in projective space. Recall the adjunction formula: if X is a smooth
variety and Y ⊂ X is a smooth closed subvariety of codimension 1, then

KY = KX + Y |Y

Now suppose X ⊂ PN is a complete intersection. Let c be the codimension
of X ⊂ PN and d1, . . . , dc the degrees of the defining equations. Recall
that KPN = −(N + 1)H where H is the class of a hyperplane. Now by the
adjunction formula and induction we deduce

KX = (d1 + · · ·+ dc − (N + 1))H|X .

In particular KX = 0 iff d1 + · · ·+ dc = N + 1. We also need the following

Lemma 12.2. Let X ⊂ PN be a complete intersection. Then H i(OX(n)) =
0 for 0 < i < dimX and n ∈ Z. (Here OX(n) := OPN (n)|X .)

Proof. We use induction on the codimension c of X ⊂ PN . If c = 0, that is,
X = PN , this follows from an explicit computation of the Cech cohomology
groups with respect to the standard affine open covering Ui = (Xi 6= 0)
of PN , see [Hartshorne, III.5.1]. Suppose the result is true for codimension
c − 1, and let X ⊂ PN be codimension c, cut out by equations of degrees
d1, . . . , dc. Consider X ⊂ Y ⊂ PN , where Y ⊂ PN is cut out by the first c−1
of the c equations defining X. The ideal sheaf IX/Y of X ⊂ Y is isomorphic
to OY (−dc), so we have an exact sequence

0→ OY (−dc)→ OY → OX → 0,

and tensoring by OY (n) we obtain an exact sequence

0→ OY (n− dc)→ OY (n)→ OX(n)→ 0
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Now the long exact sequence of cohomology

· · · → H i(OY (n))→ H i(OX(n))→ H i+1(OY (n− dc))→ · · ·

together with the induction hypothesis shows that H i(OX(n)) = 0 for 0 <
i < dimX = dimY − 1 and n ∈ Z, as required.

In particular, if X ⊂ PN is a complete intersection, then hi(OX) = 0
for 0 < i < dimX. (This can also be deduced from the Lefschetz hyper-
plane theorem and the Hodge decomposition.) We deduce that the following
complete intersections are K3 surfaces.

(1) X4 ⊂ P3

(2) X2,3 ⊂ P4

(3) X2,2,2 ⊂ P5.

Here Xd1,...,dc ⊂ PN denotes a complete intersection of codimension c defined
by equations of degrees d1, . . . , dc. Let L = OX(1) = OPN (1)|X . The degree
of X ⊂ PN is Ldim X = d1d2 · · · dc. In the cases above, we have L2 = 4, 6, 8.

A similar example is the double cover f : X → P2 branched over a smooth
plane curve B ⊂ P2 of degree 6. Here

X = (Y 2 = F (X0, X1, X2)) ⊂ L,

where p : L → P2 is the line bundle with sheaf of sections L = OP2(3),
Y ∈ Γ(L, p∗L) is the tautological homogeneous vertical coordinate on L
(that is, for t ∈ L, p(t) = x, we define Y (t) = t ∈ Lx), and F ∈ Γ(OP2(6)) is
the equation of B ⊂ P2. Explicitly, over U0 = (X0 6= 0) ⊂ P2,

X = (y2 = f(x1, x2)) ⊂ A3
x1,x2,y

f−→ A2
x1,x2

where x1 = X1/X0, x2 = X2/X0, y = Y/X3
0 , and f(x1, x2) = F/X6

0 is the
equation of B in the affine piece U0 = A2

x1,x2
. In particular, X is smooth

because B is so. We observe that

f∗OX = OP2 ⊕OP2(−3) · Y

Now H1(OX) = H1(f∗OX) because f is finite, so H1(OX) = 0. Next
we compute the canonical divisor KX . Let P ∈ B be a point and choose
coordinates x, z at P ∈ P2 such that B = (z = 0) near P . Then, locally in
the Euclidean topology at P , f : X → P2 is given by

A2
x,y → A2

x,z, (x, y) 7→ (x, y2).
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So the 2-form f∗dx ∧ dz = 2ydx ∧ dy on X vanishes along the ramification
locus R := f−1B = (y = 0) with multiplicity 1. It follows that

ωX = f∗ωP2 ⊗OX(R).

(This is an instance of the Riemann–Hurwitz formula, cf. [Hartshorne,
IV.2.3].) But R = (Y = 0) ⊂ X and Y ∈ Γ(f∗OP2(3)), so OX(R) '
f∗OP2(3). We deduce that ωX ' OX , that is, KX = 0. Finally, we note
that the line bundle M = f∗OP2(1) on X satisfies M2 = deg f = 2.

12.1 Kummer surfaces

A Kummer surface is a special type of K3 surface constructed from a complex
torus as follows. Let Y = V/L be a complex torus of dimension 2. Let
i : Y ∼−→ Y be the involution given by scalar multiplication by (−1). Let Z
be the quotient Y/〈i〉. Then Z is a normal surface with 16 = 24 singularities
corresponding to the fixed points 1

2L/L ⊂ Y = V/L of i. Let Z̃ → Z be the
blowup of the singular points. Then X := Z̃ is a smooth K3 surface called
the Kummer surface associated to Y . We describe the construction in more
detail and check that X is indeed a K3 surface below.

First we analyse the singularities of Z = Y/(Z/2Z). Working locally in
the Euclidean topology at a fixed point of the involution i, the involution is
of the form

A2
x,y

∼−→ A2
x,y, (x, y) 7→ (−x,−y).

Now, the coordinate ring k[Z] of the quotient Z = Y/G of an affine variety
Y by a finite group G is the ring of invariants k[Y ]G in the coordinate ring
k[Y ] of Y . (This was proved in 508A, see the notes on my webpage.) In our
case

k[x, y]Z/2Z = k[x2, xy, y2] = k[u, v, w]/(uw = v2),

so Z = Y/(Z/2Z) is locally of the form

(uw = v2) ⊂ A3
u,v,w

This singularity is called an ordinary double point or A1-singularity. (Note
that any nondegenerate quadratic form in 3 complex variables defines an
isomorphic singularity.) Next we study the blowup π : Z̃ → Z of the singular
point P ∈ Z. Recall that Z̃ can be computed as the strict transform of
Z ⊂ A3 under the blowup b : Bl0 A3 → A3 of 0 ∈ A3. The exceptional divisor
F of b is a copy of P2 with homogeneous coordinates U, V,W corresponding
to the coordinates u, v, w at 0 ∈ A3. The exceptional divisor E of π is given
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by E = (UW = V 2) ⊂ F = P2. (In general, the exceptional divisor for the
blowup of a hypersurface (f = 0) ⊂ An is given by (F = 0) ⊂ Pn−1 where
F is the homogeneous component of f of minimal degree.) In particular,
E is a smooth conic, so E ' P1. Now E is smooth and E ⊂ Z̃ is locally
defined by one equation (a general property of the blowup). It follows that
Z̃ is smooth. We can also compute directly in charts. Consider the affine
piece (U 6= 0) of the blowup b : Bl0 A3 → A3, given by

A3
p,v′,w′ → A3

u,v,w, (p, v′, w′) 7→ (p, pv′, pw′).

Now Z = (uw = v2), so in this affine piece b∗Z = (p2w′ = p2v′2) and
Z̃ = Z ′ = (w′ = v′2) ' A2

p,v′ . So in this affine piece π : Z̃ → Z is given by

A2
p,v′ → Z ⊂ A2

u,v,w, (p, v′) 7→ (p, pv′, pv′2).

Note that Z̃ is covered by the two affine charts (U 6= 0), (W 6= 0), and they
are symmetric.

We show that KZ̃ = 0. We first do a local calculation on the resolution of
the singularity. With notation as above, consider the 2-form dx∧dy on A2

x,y.
Observe that this form is invariant under the involution (x, y) 7→ (−x,−y).
So it defines a 2-form on the quotient Z away from the singular point P ∈ Z,
and we obtain a 2-form ω on Z̃ \E by pullback. We show that the rational
2-form ω on Z̃ is actually a nowhere zero regular 2-form on Z̃, in particular,
KZ̃ = (ω) = 0. We just compute in the charts described above. We have

Z̃ ⊃ A2
p,v′ → Z ⊂ A3

u,v,w, (p, v′) 7→ (p, pv′, pv′2)

A2
x,y → Z ⊂ A3

u,v,w, (x, y) 7→ (x2, xy, y2)

So p = x2, pv′ = xy, pv′2 = y2. Hence y = xv′ and

ω = dx ∧ dy = xdx ∧ dv′ = 1
2
dp ∧ dv′,

a nowhere vanishing 2-form on the affine piece A2
p,v′ of Z̃. Now, the same

construction applied globally to the invariant 2-form dz1 ∧ dz2 on Y = V/L,
where z1, z2 are complex coordinates on V , produces a nowhere zero regular
2-form ω on X := Z̃, so we obtain KX = 0.

It remains to show that H1(OX) = 0, or, equivalently (by the Hodge
decomposition), H1(X,Q) = 0. We first observe that there is a commutative
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diagram
W

g−−−−→ Xyφ

yπ

Y
f−−−−→ Z

where f : Y → Z = Y/〈i〉 is the quotient map, π : X = Z̃ → Z is the blowup
of the singular points, φ : W → Y is the blowup of the fixed points of the
involution i, and g : W → X is a double cover with branch locus the union
of the exceptional curves of π. In charts, the diagram is

A2
q,y′ −−−−→ A2

p,v′y y
A2

x,y −−−−→ Z

where (q, y′) 7→ (p, v′) = (q2, y′), (q, y′) 7→ (x, y) = (q, qy′), and (p, v′) 7→
(p, pv′, pv′2) and (x, y) 7→ (x2, xy, y2) as before. We check that this does
define a commutative diagram. In general, given a finite morphism f : Y →
Z and a birational morphism π : X → Z there exists a unique normal variety
W together with a finite morphism g : W → X and a birational morphism
φ : W → Y such that πg = φf . (W is called the normalisation of X in the
function field of Y .) In particular, in our example the patching of the two
charts over the given singular point P ∈ Z is automatic.

We can now show H1(X,Q) = 0 as follows. The morphism g : W →
X is the quotient map for the action of Z/2Z on W , so the image of
g∗ : H1(X,Q) → H1(W,Q) lies in H1(W,Q)Z/2Z. Moreover, g∗ is injec-
tive, because g!g∗ = (deg g) · id = 2 id. (Here g! : H1(W,Q) → H1(X,Q)
denotes the Gysin map which corresponds to the map g∗ : H3(W,Q) →
H3(X,Q) under the Poincaré duality isomorphisms H1(W,Q) ' H3(W,Q),
H1(X,Q) ' H3(X,Q).) Now, the map f∗ : H1(Y,Q)→ H1(W,Q) is an iso-
morphism because W → Y is a composition of blowups. So H1(W,Q)Z/2Z '
H1(Y,Q)Z/2Z. Finally H1(Y,Q)Z/2Z = 0 because the involution i acts by
multiplication by (−1) on H1(Y,Q). We deduce that H1(X,Q) = 0, as
required.

12.2 Topological and analytic invariants of K3 surfaces

Let X be a K3 surface. We first compute the Hodge numbers hp,q =
dimCH

p,q = hq(Ωp
X) of X.
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If X is a complex smooth projective variety (or Kähler manifold) of
dimension n, the Hodge numbers hp,q of X are usually displayed in the so
called Hodge diamond — that is, we arrange the numbers hp,q in the xy-plane
with hp,q at the point with coordinates (p−q, p+q). (Note that the possible
types (p, q) are given by 0 ≤ p, q ≤ n, so we do get a diamond.) Then
the kth row corresponds to the decomposition Hk(X,C) =

⊕
p+q=k H

p,q of
the kth cohomology group. Now Hq,p = Hp,q and also Hn−p,n−q ' (Hp,q)∗

by Poincaré duality (or Serre duality). So the diamond is symmetric under
reflection in the vertical line x = p − q = 0 and reflection in the horizontal
line y = p+q = n. (The first symmetry is given by complex conjugation, the
second by the composition of the Poincaré duality isomorphism and complex
conjugation.)

For a K3 surface X, we have h1(OX) = 0 and h2(OX) = h0(ωX) = 1
because ωX ' OX . Now Noether’s formula

χ(OX) =
1
12

(K2
X + e(X))

gives e(X) = 12χ(OX) = 24. So the Hodge diamond is

1
0 0

1 20 1
0 0

1

Proposition 12.3. Let X be a K3 surface. Then H1(X,Z) = H3(X,Z) = 0
and (H2(X,Z),∪) ' L := H3 ⊕ (−E8)2

Proof. We first show that there is no torsion in the integral cohomology of
X. For X a compact smooth 4-manifold, H1 is torsion free and TorsH3 '
TorsH2 ' TorsH1 by Poincaré duality and the universal coefficient theo-
rem. So, it’s enough to show that H1 is torsion free. Suppose not, and
let H1(X,Z) → Z/nZ be a surjection for some n > 1. The composition
π1(X) → H1(X,Z) → Z/nZ defines a covering space p : Y → X of degree
n. (Explicitly, Y is the quotient of the universal covering X̃ of X by the
kernel of the surjection π1(X)→ Z/nZ). Then Y inherits the structure of a
complex manifold from X such that p : Y → X is étale, that is, everywhere
locally on Y the map p induces an isomorphism of complex manifolds. Now
e(Y ) = n · e(X) = 24n because p : Y → X is a covering space of degree n.
Also KY = p∗KX = 0 because p is étale, so h2(OY ) = h0(ωY ) = 1. Now
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Noether’s formula gives

2− h1(OY ) = χ(OY ) =
1
12

(K2
Y + e(Y )) = 2n.

But n > 1, so this is a contradiction. SoH1(X,Z) is torsion-free, as required.
(In fact, a K3 surface X is simply connected, but we do not need this here.)
It follows that the integral cohomology of X is torsion free, and so by our
previous calculation H1(X,Z) = H3(X,Z) = 0 and H2(X,Z) is free of rank
22.

It remains to determine the isomorphism type of the lattice (H2(X,Z),∪).
(Here, a lattice is a free abelian group together with a symmetric Z-valued
bilinear form.) First, the cup product ∪ on H2(X,Z) is unimodular by
Poincaré duality. Second, it has signature (1 + 2h2,0, h1,1 − 1) = (3, 19) by
the Hodge index theorem. Third, it is even, that is α2 := α∪α is even for all
α ∈ H2(X,Z). Indeed, we already observed that, for X a compact complex
surface and D a divisor on X, D2 −D ·KX is even (by the Riemann–Roch
formula for χ(OX(D))). More generally, for α ∈ H2(X,Z), α2 − α ·KX is
even. This follows from the Wu formula [MS, p. 132]. If now X is a K3
surface then KX = 0, so α2 is even for all α ∈ H2(X,Z) as claimed. Finally,
by the classification of indefinite unimodular lattices described in Sec. 1.6, it
follows that (H2(X,Z),∪) is isomorphic to the lattice L := H3⊕(−E8)2, the
direct sum of 3 copies of the hyperbolic plane and 2 copies of the negative
definite E8 lattice.

12.3 The Torelli theorem for K3 surfaces

In this section we give the statement of the Torelli theorem and surjectivity
of the period mapping for K3 surfaces.

Let X be a K3 surface. Recall that the lattice (H2(X,Z),∪) is isomor-
phic to L := H3 ⊕ (−E8)2 and the summands in the Hodge decomposition

H2(X,C) = H2,0 ⊕H1,1 ⊕H0,2

have dimensions 1, 20, 1.
The Hodge decomposition ofH2(X,C) is determined byH2,0 ⊂ H2(X,C).

Indeed, we have H0,2 = H2,0 and H1,1 = (H2,0 ⊕ H0,2)⊥. (For a k-vector
space V with a bilinear pairing V × V → k and a subspace W ⊂ V , we
define W⊥ = {v ∈ V | (v, w) = 0 ∀ w ∈ W}.) To see the second equality,
recall that the cup product on H2(X,C) = H2

dR(X,C) is given by

([ω], [η]) 7→
∫

X
ω ∧ η

74



so Hp,q is orthogonal to Hp′,q′ unless p + p′ = q + q′ = 2. Thus H1,1 ⊆
(H2,0 ⊕H0,2)⊥, and the dimensions agree, so we have equality.

Theorem 12.4. (Torelli theorem for K3s)[BHPV, Cor. 11.2, p. 333] Sup-
pose X, X ′ are K3 surfaces and φ : (H2(X,Z),∪) → (H2(X ′,Z),∪) is an
isomorphism of lattices such that φC(H2,0(X)) = H2,0(X ′). Then X is iso-
morphic to X ′.

Let X be a K3 surface and Ω a nonzero holomorphic 2-form on X. So

H2,0(X) = H0(ωX) = C · [Ω] ⊂ H2
dR(X,C).

Then [Ω]2 = 0 and [Ω][Ω] =
∫
X Ω ∧ Ω̄ > 0.

Theorem 12.5. (Surjectivity of the period mapping)[BHPV, Cor 14.2, p. 339]
Let v ∈ LC be a vector such that v2 = 0 and v · v̄ > 0. Then there exists
a K3 surface X and an isomorphism φ : (H2(X,Z),∪) ∼−→ L such that
φC(H2,0(X)) = C · v. (Note that X is uniquely determined by the Torelli
theorem).

12.4 Elliptic fibrations of K3 surfaces

Recall the Riemann-Roch formula for a divisor D on a compact complex
surface X

χ(OX(D)) = χ(OX) +
1
2
D(D −KX)

If now X is a K3 surface the formula simplifies considerably: we have
χ(OX) = 2 and KX = 0, so

χ(OX(D)) = 2 +
1
2
D2

In particular, using Serre duality h2(OX(D)) = h0(OX(KX−D)) and KX =
0, we obtain the inequality

h0(OX(D)) + h0(OX(−D)) ≥ 2 +
1
2
D2.

Theorem 12.6. Let X be a K3 surface and D a divisor on X

(1) If D2 ≥ −2 then either h0(OX(D)) 6= 0 or h0(OX(−D)) 6= 0. (Note:
if both are nonzero then OX(D) ' OX .)

(2) If C ⊂ X is an irreducible curve then C2 ≥ −2, with equality iff
C ' P1. In this case C is called a (−2)-curve.
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(3) Suppose D2 = 0, D 6= 0, and h0(OX(D)) 6= 0. Then D is linearly
equivalent to a positive linear combination

aE +
∑

miCi

where E is a smooth curve of genus 1 such that E2 = 0 and the Ci

are (−2)-curves. The linear system |E| is basepoint free and defines a
morphism φ : X → P1 with general fibre a smooth curve of genus 1.

Proof. (1) follows immediately from the Riemann–Roch inequality derived
above. To explain the note: h0(OX(D)) 6= 0 iff D is linearly equivalent to
an effective divisor D′. If X is projective, let H be a hyperplane section,
then H ·D = H ·D′ ≥ 0, with equality iff D′ = 0. So if h0(OX(D)) 6= 0 and
h0(OX(−D)) 6= 0 then D ∼ 0. More generally, if X is a Kähler manifold,
the same argument works with H replaced by a Kähler class κ ∈ H2(X,R).

(2) Recall that
2pa(C)− 2 = (KX + C) · C

and pa(C) ≥ 0 with equality iff C ' P1. Now KX = 0 gives 2pa(C)−2 = C2

and the result follows.
(3) We first show that there exists a positive linear combination

∑
miCi

of (−2)-curves such thatD′ := D−
∑
miCi is nef,D′2 = 0, and h0(OX(D′)) 6=

0. (Recall that a divisor D on a variety X is nef if D ·C ≥ 0 for every curve
C ⊂ X.) If D is nef, we are done. So suppose D · C < 0 for some curve C.
Since h0(OX(D)) 6= 0, we may assume D is effective (replacing D by a lin-
early equivalent divisor). Then, since D ·C < 0, the curve C is contained in
the support of D and C2 < 0. Hence by (2) C2 = −2 and C is a (−2)-curve.
We now consider the Picard–Lefschetz reflection

sC : PicX → PicX, B 7→ B + (B · C)C

defined by the (−2)-curve C. This is an isomorphism of lattices for the
intersection product on PicX. Indeed,

sC(B)2 = B2 + 2(B · C)(B · C) + (B · C)2C2 = B2

using C2 = −2. We replace D by D1 := sC(D). Then D1 = D − mC
where m = −(D · C) > 0, D2

1 = 0, and h0(OX(D1)) 6= 0 by Lemma 12.7
below. This process cannot continue indefinitely because the degree of D
with respect to a hyperplane section (or a Kähler class) decreases at each
stage. So, after a finite number of steps we obtain D′ = D −

∑
miCi such

that D′ is nef, D′2 = 0, and h0(OX(D′)) 6= 0, as required.
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Let D be an effective divisor on a smooth K3 X such that D2 = 0, D 6= 0
and D is nef. By the Riemann–Roch inequality, h0(OX(D)) ≥ 2. Consider
the complete linear system |D|. Write |D| = |M | + F where F is the fixed
part and M is mobile (that is, |M | does not have fixed components). Then
D2 = D(M + F ) = 0 and DM,DF ≥ 0, so DM = DF = 0. Also M is nef
because it is mobile. So from 0 = DM = (M+F )M andM2,MF ≥ 0 we get
M2 = MF = 0, and finally 0 = DF = (M+F )F gives F 2 = 0. If F 6= 0 then
h0(OX(F )) ≥ 2 by the Riemann–Roch inequality. This is a contradiction
because F is fixed. So F = 0. If M1,M2 are two general elements of |M |
then M1,M2 do not contain common components, and M1 ·M2 = M2 = 0,
so M1 and M2 are disjoint. Thus |D| = |M | is basepoint free.

Let φ : X → PN be the morphism defined by |D|. The image of φ is
a curve C because D2 = 0 and D 6= 0. Indeed, D = φ∗H where H is a
hyperplane in PN , so dimφ(X) ≤ 1 because D2 = 0 (and φ(X) is not a
point because D 6= 0). The Stein factorisation of φ ([Hartshorne, III.11.5,
p. 280]) gives φ = p ◦ f where f : X → C̃ is a morphism to a smooth
curve C̃ with connected fibres and p : C̃ → C is a finite morphism. We
claim that C̃ ' P1. Indeed, the map f∗ : Γ(ΩC̃) → Γ(ΩX) is injective,
and Γ(ΩX) = H1,0(X) = 0 because X is a K3, so Γ(ΩC̃) = 0 and thus
C̃ ' P1. The morphism φ : X → PN was defined by the complete linear
system |D|. So also p : C̃ → C ⊂ PN is defined by a complete linear system.
But C̃ ' P1, so p : C̃ → C is an isomorphism. Finally, D = φ∗H ∼ f∗(NP ),
where P ∈ C ' P1 is any point, so D ∼ NE where E is any fibre of f . A
general fibre E of f is smooth by Bertini’s theorem, and E2 = 0 because E
is a fibre of a morphism from a surface to a curve. Now the genus formula
2g(E)− 2 = (KX + E)E and KX = 0 gives g(E) = 1.

Lemma 12.7. Let X be a K3 surface, C ⊂ X a (−2)-curve and

sC : PicX → PicX, D 7→ D + (D · C)C

the associated Picard–Lefschetz reflection. If D is an effective divisor on X
such that D2 ≥ 0, then sC(D) is linearly equivalent to an effective divisor.

Proof. If D·C ≥ 0 the result is clear. So suppose D·C < 0. By Thm. 12.6(1)
either sC(D) or −sC(D) is linearly equivalent to an effective divisor. Sup-
pose (for a contradiction) that −sC(D) is linearly equivalent to an effective
divisor B. Then

B +D ∼ −sC(D) +D = −(D · C)C = mC

where m > 0. Now since C2 < 0 it follows that B+D = mC. Thus D = kC,
some 0 < k < m. This contradicts D2 ≥ 0.
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Let f : X → B be a morphism from a compact complex surface X to
a smooth curve B. Then the general fibre F of f is a smooth curve. Let
Fi = f−1Pi, i = 1, . . . , r, be the singular fibres of f , and write B0 = B \{Pi}
and X0 = f−1B0 = X \

⋃
Fi. Then

e(X) = e(X0) +
∑

e(Fi) = e(B0)e(F ) +
∑

e(Fi)

= e(B)e(F ) +
∑

(e(Fi)− e(F )).

Indeed e(X0) = e(B0)e(F ) because X0 → B0 is a topological fibration, and
e(B0) = e(B)− r. To see the first equality, we use the formula

e(K ∪ L) = e(K) + e(L)− e(K ∩ L)

given by the Mayer–Vietoris sequence as follows. Let Pi ∈ Di ⊂ B be
a small open disc around Pi, Ni = f−1Di, and Y = X \

⋃
Ni. Then

X = Y ∪
⋃
Ni, and Y ⊂ X0 and Fi ⊂ Ni are homotopy equivalences. Also

Y ∩Ni = ∂Ni, the boundary of Ni, and ∂Ni → ∂Di = S1 is a fibration. So
e(∂Ni) = e(F )e(S1) = 0 and

e(X) = e(Y ) +
∑

e(Ni)−
∑

e(∂Ni) = e(X0) +
∑

e(Fi).

Now suppose that f : X → B is an elliptic fibration, that is, the general
fibre F is a smooth curve of genus 1. Then e(F ) = 0, so the above formula
gives

e(X) =
∑

e(Fi).

Finally, suppose in addition that X is a K3 surface and each singular fibre
Fi is a rational nodal curve (this is the generic situation). Here by a rational
nodal curve we mean a curve obtained from P1 by glueing two points to form
a node. Then e(X) = 24 and e(Fi) = 1 for each i, so the morphism f has
24 singular fibres.

13 Overview of the classification of surfaces

Let X be a smooth projective surface over k = C.

Theorem 13.1. If KX is not nef then there exists an “extremal” curve C
with KX · C < 0 and a morphism φ : X → Y to a normal projective variety
Y such that φ has connected fibres and a curve Γ ⊂ X is contracted by φ
iff Γ is numerically equivalent to a rational multiple of C. The morphism φ
can be described explicitly as follows.
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(1) C2 < 0. Y is a smooth surface and φ : X → Y is the blowup of a point
P ∈ Y with exceptional curve C.

(2) C2 = 0. Y is a curve and φ : X → Y is a ruled surface.

(3) C2 > 0. Y is a point and X ' P2.

Proof. (Sketch) The idea of the proof of the first part is the following. If
φ : X → Y is a morphism and H is an ample divisor on Y , then for each
curve Γ ⊂ X we have φ∗H · Γ ≥ 0 with equality iff Γ is contracted by φ.
Consider the cone of curves

C := {
∑

ai[Ci] | Ci ⊂ X curves, ai ∈ R≥0} ⊂ (NumX)R.

This is a convex cone in the finite dimensional R-vector space (NumX)R. If
C ⊂ X and φ : X → Y are as in the statement, write D := φ∗H, then D ·α ≥
0 for all α ∈ C, with equality iff α = λ[C], some λ ∈ R≥0. Geometrically, the
hyperplane (D ·α = 0) ⊂ (NumX)R intersects the cone C in the ray R≥0[C],
and C is contained in the halfspace (D ·α ≥ 0). Conversely, one shows that,
given such a D, for some n > 0 the linear system |nD| is basepoint free
and defines a morphism φ : X → Y with the desired properties. (We use the
assumption KX ·C < 0 here.) To prove the existence of C and D, we analyse
the structure of the cone C. One shows that, in the half space (KX ·α < 0),
the cone is locally polyhedral, that is, the convex hull of finitely many rays.
Then we can take C to be a generator of one of the extremal rays of the
cone, and D a divisor defining a hyperplane intersecting C in this ray. For
more details see [Reid, Ch. D].

Now suppose given C and φ : X → Y as in the statement. We derive
the explicit description of the possibilities for φ. If dimY = 2 then φ is
birational so C2 < 0 by negativity of the contracted locus. Now KX ·C < 0
implies C is a (−1)-curve by Cor. 7.12 and φ is the blowup of a point on
a smooth surface by Castelnuovo’s contractibility criterion (Thm. 7.13). If
dimY = 1 then φ : X → Y has irreducible fibres (since every contracted
curve is numerically equivalent to a multiple of C). Thus C is a fibre of
φ and so C2 = 0. Now KX · C < 0 implies that φ : X → Y is a ruled
surface by Thm. 10.1. If Y is a point then every curve is contracted by φ,
so ρ(X) = 1, C2 > 0, and −KX is ample (since KX ·C < 0). Hence X ' P2

by Thm. 9.1.

Corollary 13.2. Let X be a smooth projective surface over k = C. There
exists a finite sequence of contractions of (−1)-curves

X = X0 → X1 → · · · → Xn = Y
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such that one of the following holds.

(1) KY is nef.

(2) Y is a ruled surface.

(3) Y ' P2.

If KY is nef we say Y is a minimal model.

Proof. This follows from the theorem by induction. Note that if φ : X → X ′

is the contraction of a (−1)-curve (a blowup) then ρ(X ′) = ρ(X) − 1. So
the process must stop.

Proposition 13.3. (Uniqueness of minimal models) Suppose Y1, Y2 are
smooth projective surfaces with KY1 ,KY2 nef, and f : Y1 99K Y2 is a bira-
tional map. Then f is an isomorphism.

Proof. See Example Sheet 2, Q4.

We now describe the classification of surfaces with KX nef. Recall that
we use the symbol ‘≡’ to denote numerical equivalence of divisors.

Theorem 13.4. Let X be a smooth projective surface over k = C such that
KX is nef. Then we have the following cases.

(1) KX ≡ 0. If KX = 0 then X is a K3 surface or an abelian surface (a
projective complex torus of dimension 2). In general, mKX = 0 for
some m ∈ {1, 2, 3, 4, 6}, and X is a quotient of a K3 or abelian surface
by a free action of Z/mZ.

(2) K2
X = 0,KX 6≡0. For some n > 0 the linear system |nKX | is basepoint

free and defines an elliptic fibration φ : X → C.

(3) K2
X > 0. For some n > 0 the linear system |nKX | is basepoint free

and defines a birational morphism φ : X → X.

In case (3) we say X is a surface of general type. For example, if X ⊂ PN

is a complete intersection, with defining equations of degrees d1, . . . , dN−2,
then KX = (

∑
di− (N + 1))H where H is a hyperplane section. So X is of

general type iff
∑
di > N + 1.
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14 Godeaux surfaces

We describe an example of a surfaceX of general type such that h0(KX) = 0.
Let Y = Y5 ⊂ P3 be a smooth quintic surface. Consider the action of

G = Z/5Z on P3 given by

(X0 : X1 : X2 : X3) 7→ (ζ0X0 : ζ1X1 : ζ2X2 : ζ3X3)

where ζ is a 5th root of unity. Assume that Y is preserved by the group
action. Assume also that Y does not contain any of the fixed points (1 : 0 :
0 : 0), . . . , (0 : 0 : 0 : 1). For example, we can take

Y = (X5
0 +X5

1 +X5
2 +X5

3 = 0) ⊂ P3.

Then G acts freely on Y , so X := Y/G is smooth and the quotient map
p : Y → X is étale. The hypersurface Y is simply connected by the Lefschetz
hyperplane theorem, and p : Y → X is a covering map. So Y is the universal
cover of X, and π1(X) = G = Z/5Z. By the adjunction formula

KY = KP3 + Y |Y = −4H + 5H = H

where H is a hyperplane section of Y . So KY is ample, and KY = p∗KX

because p is étale. It follows that KX is ample. (More generally, if f : X →
Y is finite and Y is proper, then a line bundle L on Y is ample iff f∗L
is ample. This follows from the Nakai–Moishezon criterion for ampleness
[Hartshorne, V.1.10, A.5.1].) Finally, we compute h0(KX) = 0. We have
Γ(ωX) = Γ(ωY )G because X = Y/G with G acting freely on Y . Also, as
noted above, KY = H, so

Γ(ωY ) ' Γ(OY (1)) = Γ(OP3(1)) = 〈X0, . . . , X3〉k

(To get the equality Γ(OY (1)) = Γ(OP3(1)), we tensor the exact sequence

0→ OP3(−5)→ OP3 → OY → 0

by OP3(1) to obtain

0→ OP3(−4)→ OP3(1)→ OY (1)→ 0.

Now the long exact sequence of cohomology together with H i(OP3(−4)) = 0
for i = 0, 1 shows that the restriction map H0(OP3(1)) → H0(OY (1)) is
an isomorphism.) We need to describe the G action on Γ(ωY ) explicitly
to compute the invariants. Consider the affine piece U0 = (X0 6= 0) of
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Y and write xi = Xi/X0 for i = 1, 2, 3 and f = F/X5
0 , the equation of

U0 ⊂ A3
x1,x2,x3

. Then

ω =
dx1 ∧ dx2

∂f
∂x3

= −dx1 ∧ dx3

∂f
∂x2

=
dx2 ∧ dx3

∂f
∂x1

is a regular nowhere zero 2-form on U0. Indeed, on U0 we have

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 = 0

and using this gives the equalities above in the definition of ω. Now, since
U0 is smooth, at each point P ∈ U0 we have ∂f

∂xi
6= 0 for some i, and then

the xj , j 6= i, define local coordinates at P . It follows that ω is regular
and nonzero at P . Now consider ω as a rational 2-form on Y . We find
(ω) = (X0 = 0), and so

Γ(ωY ) = 〈ω, x1ω, x2ω, x3ω〉k.

Finally, we compute the G-action. We have xi 7→ ζixi, f 7→ f , so ∂f
∂xi
7→

ζ−i ∂f
∂xi

and ω 7→ ζω. We deduce that Γ(ωX) = Γ(ωY )G = 0 as required.

Remark 14.1. A Godeaux surface is a surface of general type such that
h0(KX) = h1(OX) = 0 and K2

X = 1. The first example of such a surface is
the one described above. See [BHPV, VII.10] for more details.

15 The Hopf surface

We describe a compact complex surface X such that the Hodge decomposi-
tion does not hold.

Consider the action of G = Z on Y = C2 \ {0} given by

z = (z1, z2) 7→ (
1
2
z1,

1
2
z2).

This is a free and properly discontinuous action. That is, for all P ∈ Y
there exists a (Euclidean) neighbourhood P ∈ U ⊂ Y such that gU ∩U = ∅
for g ∈ G \ {e}. Hence the quotient X := Y/G is a complex manifold.
Topologically, we have diffeomorphisms

C2 − {0} = R4 − {0} ' S3 × R>0 ' S3 × R

z 7→ (z/‖z‖, ‖z‖) 7→ (z/‖z‖, log ‖z‖)
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Taking the quotient we obtain a diffeomorphism

X = (C2 \ {0})/Z ' S3 × (R/Z · log 2) ' S3 × S1

In particularX is compact, and has Betti numbers 1, 1, 0, 1, 1 by the Künneth
formula. Now we see that the Hodge decompositionH1(X,C) = H1,0⊕H0,1,
H0,1 = H1,0 does not hold because b1(X) = 1 is odd. So X is not a Kähler
manifold.

Acknowledgements: Much of the presentation is based on [BHPV], [Beauville],
[GH], [Reid], [Shafarevich], and [Voisin].

References

[BHPV] W. Barth, K. Hulek, C. Peters, A. Van de Ven, Compact complex
surfaces, 2nd ed.

[Beauville] A. Beauville, Complex algebraic surfaces.

[CMSP] J. Carlson, S. Müller-Stach, C. Peters, Period mappings and period
domains.

[Fulton] W. Fulton, Algebraic topology.

[GH] P. Griffiths, J. Harris, Principles of algebraic geometry.

[Hartshorne] R. Hartshorne, Algebraic geometry.

[Hatcher] A. Hatcher, Algebraic topology, available at
www.math.cornell.edu/∼hatcher/AT/ATpage.html

[KM] J. Kollár, S. Mori, Birational geometry of algebraic varieties.

[Matsumura] H. Matsumura, Commutative ring theory.

[MS] J. Milnor, J. Stasheff, Characteristic classes.

[Reid] M. Reid, Chapters on algebraic surfaces, available at arxiv.org

[Serre55] J-P. Serre, Faisceaux algébriques cohérents, available at
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at www.numdam.org

83



[Serre70] J-P. Serre, A course in arithmetic.

[Shafarevich] I. Shafarevich, Basic algebraic geometry 1.

[Voisin] C. Voisin, Hodge theory and complex algebraic geometry I.

84


