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These are notes from the lectures of Corti, Kollár, Lazarsfeld, and Mustaţă
at the workshop “Minimal and canonical models in algebraic geometry” at the
Mathematical Sciences Research Institute, Berkeley, CA, April 16-20, 2007. The
lectures give an overview of the recent advances on canonical and minimal models
of algebraic varieties obtained in the papers [HM1], [BCHM].

We have tried to preserve the informal character of the lectures, and as a
consequence we have kept the subsequent changes to a minimum. Lecture 1, by
Lazarsfeld, gives an introduction to the extension theorems used in the proof. For a
detailed introduction to multiplier ideals, extension theorems, and applications, see
Lazarsfeld’s PCMI lectures, in this volume. Lectures 2 and 3 describe the proof from
[HM1] of the existence of flips in dimension n assuming the MMP in dimension
n − 1. Lecture 2, by Mustaţă, gives a geometric description of the restriction of
the log canonical algebra to a boundary divisor (it is a so called adjoint algebra).
Lecture 3, by Corti, proves that this algebra is finitely generated, following ideas
of Shokurov. For a slightly different approach to the proof of existence of flips, and
for more details, see Hacon’s PCMI lectures in this volume. Lecture 4, by Kollár,
gives an overview of the paper [BCHM] on the existence of minimal models for
varieties of log general type.

Videos of the lectures are available at
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LECTURE 1

Extension theorems

These are very condensed notes of Lazarsfeld’s lecture on the Hacon-McKernan
extension theorem. No attempt has been made to flesh them out. As mentioned
above, some of the essential ideas are discussed in detail in Lazarsfeld’s PCMI
lectures elsewhere in this volume.

The theorem in question is this:

Theorem 1.1 (Hacon–McKernan). Let X be a smooth projective variety over C.
Let T + ∆ be an effective Q-divisor having textnormalSNC support, with T irre-
ducible and b∆c = 0. Assume that

∆ ∼Q A+B,

where A is ample, B is effective, and T 6⊂ SuppB. Suppose furthermore that the
stable base locus of KX + T + ∆ does not contain any intersection of irreducible
components of T+∆. Choose k such that k∆ is integral and set L = k(KX+T+∆).
Then the restriction map

H0(X,mL)→ H0(T,mLT )

is surjective for all m ≥ 1.

Here and in what follows we write DT for the restriction of a divisor D to a subva-
riety T .

Remark 1.2. Hacon and McKernan prove an analogous result for a projective
morphism X → Z with Z affine.

The proof draws on an idea of Siu which first appeared in his work on de-
formation invariance of plurigenera. There are also related works by Kawamata,
Takayama, and others. Ein and Popa have given a generalization of the theorem.

1.1. Multiplier and adjoint ideals

For an effective Q-divisor D on X, we have the multiplier ideal J (X,D) ⊆ OX .
Roughly speaking it measures the singularities of the pair (X,D) — worse singu-
larities correspond to deeper ideals.

Let L be a big line bundle on X. Set

J (X, ‖L‖) = J (X,
1
p
Dp)

where Dp ∈ |pL| is general and p� 0.

Proposition 1.3. Multiplier ideals satisfy the following properties.
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6 LECTURE 1. EXTENSION THEOREMS

(1) Every section of L vanishes on J (‖L‖), i.e. the map

H0(L⊗ J (X, ‖L‖)) ∼−→ H0(L)

is an isomorphism.
(2) If M = KX + L+ P where P is nef then

Hi(X,M ⊗ J (‖L‖)) = 0

for all i > 0.
(3) If M = KX +L+ (dimX+ 1)H where H is very ample then M ⊗J (‖L‖)

is globally generated.

Here, given an ideal a ⊆ OX , line bundle M , and section s ∈ Γ(X,M), we say s
vanishes on a if s ∈ Im(Γ(M ⊗ a) → Γ(M)). Statement (2) is a formulation of
the Kawamata-Viehweg-Nadel vanishing theorem. Assertion (3) follows from (2)
plus Castelnuovo–Mumford regularity: if a sheaf F on projective space satisfies
Hi(F(−i)) = 0 for all i > 0 then F is globally generated.

Consider a smooth irreducible divisor T ⊂ X, T 6⊂ SuppD. We can define the
adjoint ideal AdjT (X,D) ⊆ OX , which sits in an exact sequence.

0→ J (X,D)⊗OX(−T )→ Adj→ J (T,DT )→ 0.

Similarly, suppose that T is not contained in the stable base locus of L. We have

J (T, ‖L‖T ) := J (T,
1
p
Dp|T ) ⊆ J (T, ‖LT ‖)

where Dp ∈ |pL| is general and p� 0. We get AdjT (X, ‖L‖) ⊆ OX , with

0→ J (X, ‖L‖)⊗OX(−T )→ Adj→ J (T, ‖L‖T )→ 0.

Now apply (·) ⊗ M . The essential idea is this: If s ∈ Γ(T,MT ) vanishes on
J (T, ‖L‖T ) and if M − (KX +L+T ) is nef, then s extends to a section of OX(M)
(we get vanishing of H1 by Kawamata–Viehweg vanishing).

Consider as above L = k(KX + T + ∆), ∆ = A+B, etc.

Lemma 1.4. (Main Lemma) There exists a very ample divisor H (independent of
p) such that for every p ≥ 0, every section

σ ∈ Γ(T,O(pLT +HT )⊗ J (‖pLT ‖))
extends to σ̂ ∈ Γ(X,OX(pL+H)).

(0) We may assume (T,BT ) is klt. Take h ∈ Γ(X,H) general.
(1) Let s ∈ Γ(T,mLT ). Consider σ = sl · h ∈ Γ(T, lmLT +HT ). The section σ

vanishes on J (T, ‖lmLT ‖). So there exists σ̂ ∈ Γ(X, lmL+H) such that σ̂|T = σ
(by the Main Lemma).

(2) Let F = mk−1
mlk div(σ̂) +B. We find (using ∆ = A+B) that mL−F − T =

KX + (ample) if l� 0.
(3) Using (T,BT ) klt, we check that OT (−div(s)) ⊆ J (T, FT ). So s vanishes

on J (T, FT ).
(4) Finally, consider the sequence

0→ J (X,F )⊗OX(−T )→ Adj→ J (T, FT )→ 0

tensored by mL. We have s ∈ H0(OT (mLT )⊗J (T, FT )) and H1(OX(mL− T )⊗
J (X,F )) = 0 by vanishing. So s extends.
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1.2. Proof of the Main Lemma

We will only prove the special case k = 1, L = KX +T (so ∆ = 0 — we don’t need
∆ = A+B here), T not contained in the stable base locus of L. (Note: LT = KT ).
We prove

(∗)p : If H = (dimX + 1)(very ample), then

H0(T,O(pLT +HT )⊗ J (‖(p− 1)LT ‖))
lifts to H0(X, pL+H).

The proof is by induction on p. The case p = 1 is OK by vanishing. Assume
(∗)p holds.

Claim 1. J (T, ‖(p− 1)LT ‖) ⊆ J (T, ‖pL+H‖T ).

Proof. By Castelnuovo–Mumford regularity and vanishing

OT (pLT +HT )⊗ J (‖(p− 1)LT ‖) (∗∗)
is globally generated.

(∗)p implies sections of (∗∗) lift to X. So

J (T, ‖(p− 1)LT ‖) ⊆ b(X, |pL+H|) · OT ⊆ J (T, ‖pL+H‖T ).
(here b(X, |D|) denotes the ideal defining the base locus of |D|). �

Consider the adjoint sequence

0→ J (‖pL+H‖)(−T )→ Adj→ J (T, ‖pL+H‖T )→ 0.
Apply (·)⊗OX((p+ 1)L+H). By the Claim

H0(OT ((p+1)LT+HT )⊗J (‖pLT ‖)) ⊆ H0(OT ((p+1)LT+HT )⊗J (T, ‖pL+H‖T ))

and
H1(OX((p+ 1)L+H − T )⊗ J (‖pL+H‖)) = 0.

This gives the desired lifting.





LECTURE 2

Existence of flips I

This chapter is an exposition of work of Hacon and McKernan from [HM1], that
build on the extension results from [HM2], and on ideas and results of Shokurov
from [Sho].

2.1. The setup

Let f : (X,D) → Z be a birational projective morphism, where X is Q-factorial,
D is an effective Q-divisor, Z is normal, ρ(X/Z) = 1, and −(KX +D) is f -ample.
Assume also that f is small, i.e., that the exceptional locus has codimension ≥ 2.
We consider two cases:

(1) klt flip: (X,D) klt.
(2) pl flip: (X,D) plt, D = S + ∆ with bDc = S irreducible, and −S is

f -ample.
It is well-known that the flip of f exists iff the OZ-algebra

⊕m≥0f∗OX (bm(KX +D)c)
is finitely generated. This is a local question on Z, hence we may and will assume
that Z is affine.

It is a result of Shokurov that MMP in dimension (n− 1), plus existence of pl
flips in dimension n implies existence of klt flips in dimension n. Therefore we need
only consider the case of pl flips.

Remark 2.1. Let R = ⊕i≥0Ri be a graded domain such that R0 is a finitely
generated C-algebra. Then the algebra R is finitely generated iff the truncation

R(k) := ⊕i≥0Rki

is finitely generated. Indeed, we have an obvious action of Z/kZ on R such that the
ring of invariants is R(k), hence R finitely generated implies R(k) finitely generated.
To see the converse, it is enough to note that for every 0 < j < k, if s ∈ ⊕i≥0Rki+j
is a nonzero homogeneous element, then multiplication by sk−1 embeds ⊕i≥0Rki+j
as an ideal of R(k).

¿From now on, we assume that we are in the pl flip setting.

Remark 2.2. Since ρ(X/Z) = 1, and since we work locally over Z, it follows from
our assumptions that we may assume that there are positive integers p and q such
that p(KX +D) and qS are linearly equivalent Cartier divisors.

Remark 2.3. Since Z is affine and f is small, it follows that S is linearly equivalent
to an effective divisor not containing S in its support. In particular, it follows from
the previous remark that there is a positive integer k and G ∈ |k(KX + D)| such
that S 6⊂ Supp(G).
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10 LECTURE 2. EXISTENCE OF FLIPS I

A key remark due to Shokurov is that the algebra

R : = ⊕m≥0H
0(X,OX(bm(KX + S + ∆)c))

is finitely generated iff the restricted algebra R|S , given as

⊕m≥0 Im
(
H0(X,OX(bm(KX + S + ∆)c))→ H0(S,OX(bm(KX + S + ∆)c)|S)

)
is finitely generated. Sketch of proof : replacing X by a suitable U ⊂ X such that
codim(X − U) ≥ 2, we may assume that S is Cartier. Since

p(KX + S + ∆) ∼ qS
for some positive integers p and q, it follows from Remark 2.1 that it is enough to
show that the algebra R′ = ⊕m≥0H

0(X,O(mS)) is finitely generated. Using the
fact that R|S is finitely generated and Remark 2.1, we deduce that the quotient
R′/hR′ is finitely generated, where h ∈ R′1 is an equation for S. Therefore R′ is
finitely generated.

The above discussion shows that existence of pl flips in dimension n (and so
by Shokurov’s result, existence of klt flips in dimension n) follows from MMP in
dimension (n− 1) and the following Main Theorem, due to Hacon and McKernan.

Theorem 2.4. Let f : (X,S + ∆)→ Z be a projective birational morphism, where
X is Q-factorial, S+ ∆ is an effective Q-divisor with bS+ ∆c = S irreducible, and
Z is a normal affine variety. Let k be a positive integer such that k(KX + S + ∆)
is Cartier. Suppose

(1) (X,S + ∆) is plt.
(2) S is not contained in the base locus of |k(KX + S + ∆)|.
(3) ∆ ∼Q A+B, where A is ample, B is effective, and S 6⊂ SuppB.
(4) −(KX + S + ∆) is f -ample.

If the MMP (with R-coefficients) holds in dimension dimX − 1, then the restricted
algebra

R|S = ⊕m≥0 Im(H0(X,Lm)→ H0(S,Lm|S))
is finitely generated, where L = OX(k(KX + S + ∆)).

2.2. Adjoint algebras

In the setting of Theorem 2.4, we have by adjunction (KX +S+ ∆)|S = KS + ∆|S .
Moreover, the pair (S,∆|S) is klt. The trouble comes from the fact that the maps

(2.1) H0(X,mk(KX + S + ∆))→ H0(S,mk(KS + ∆|S))

are not surjective in general.
The goal is find a model T → S such that (some truncation of) the restricted

algebra R|S can be written as

⊕m≥0H
0(T,Bm),

where {Bm}m is an additive sequence of Cartier divisors on T . Recall that an
additive sequence is a sequence of divisors {Bm}m on a normal variety T such that
Bi+Bj ≤ Bi+j for all i, j. Note that in this case ⊕m≥0H

0(T,O(Bm)) has a natural
algebra structure. A typical example of additive sequence: start with a divisor D
such that |D| is nonempty, and let Bm = Mob(mD) := mD − Fix|mD|. More
generally, if {Dm}m is an additive sequence such that |Dm| 6= ∅ for every m, and if
we put Bm = Mob(Dm), then {Bm}m forms an additive sequence.
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Given an additive sequence {Bm}m, the associated convex sequence is given by
{ 1
mBm}m. If each 1

mBm is bounded above by a fixed divisor, set

B := sup
1
m
Bm = lim

m→∞

1
m
Bm.

Remark 2.5. If B is semiample and if there exists i such that B = 1
iBi (hence,

in particular, B is a Q-divisor), then ⊕m≥0H
0(T,O(Bm)) is finitely generated.

Indeed, in this case B = 1
mBm whenever i | m, and it is enough to use the fact that

if L is a globally generated line bundle, then ⊕m≥0H
0(X,Lm) is finitely generated.

Suppose that f : T → Z is a projective morphism, where T is smooth and Z is
affine. An adjoint algebra on T is an algebra of the form

⊕m≥0H
0(T,O(Bm)),

where {Bm} is an additive sequence and Bm = mk(KT + ∆m) for some k ≥ 1 and
∆m ≥ 0 such that ∆ := limm→∞∆m exists and (T,∆) is klt.

Our goal in what follows is to show that under the hypothesis of Theorem 2.4
(without assuming −(KX + S + ∆) ample or MMP in dimension dim(X)− 1), the
algebra R|S can be written as an adjoint algebra. It is shown in Lecture 3 how one
can subsequently use the fact that −(KX + S + ∆) is ample to deduce that R|S
is “saturated”, and then use MMP in dimension dim(X)− 1 to reduce to the case
when the limit of the above ∆m is such that KT + (this limit) is semiample. This is
enough to give the finite generation of R|S (Shokurov proved this using diophantine
approximation).

2.3. The Hacon–McKernan extension theorem

As we have already mentioned, the difficulty comes from the non-surjectivity of the
restriction maps (2.1). We want to replace X by higher models on which we get
surjectivity of the corresponding maps as an application of the following Extension
Theorem, also due to Hacon and McKernan.

Theorem 2.6. Let (Y, T + ∆) be a pair with Y smooth and T + ∆ an effective
Q-divisor with SNC support, with bT + ∆c = T irreducible. Let k be a positive
integer such that k∆ is integral and set L = k(KY + T + ∆). Suppose

(1) ∆ ∼Q A+B, where A is ample, B is effective, and T 6⊂ Supp(B).
(2) No intersection of components of T + ∆ is contained in the base locus of

L.
Then the restriction map

H0(Y,L)→ H0(T, L|T )

is surjective.

This theorem was discussed in Lecture 1.

2.4. The restricted algebra as an adjoint algebra

Let f : (X,S + ∆) → Z be a projective morphism, where X is Q-factorial, S + ∆
is an effective Q-divisor with bS + ∆c = S irreducible, (X,S + ∆) is plt, and Z is
an affine normal variety. Let k be a positive integer such that k(KX + S + ∆) is
Cartier and S is not contained in the base locus of |k(KX + S + ∆)|. Assume

∆ ∼Q A+B (∗)
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where A is ample, B is effective, and S 6⊂ SuppB.
We will replace (X,S + ∆) by a log resolution (in fact, a family of resolutions)

on which we can apply the extension theorem and use this to exhibit the restricted
algebra as an adjoint algebra. Consider a birational morphism f : Y → X, and let
T be the strict transform of S. Write

KY + T + ∆Y = f∗(KX + S + ∆) + E,

where ∆Y and E are effective and have no common components, f∗∆Y = ∆, and
E is exceptional.

Since E is effective and exceptional, we have H0(X,mk(KX + S + ∆)) '
H0(Y,mk(KY + T + ∆Y )) for every m. Therefore we may “replace” KX + S + ∆
by KY + T + ∆Y .

Step 1. After replacing ∆ by the linearly equivalent divisor A′ + B′, where
A′ = εA and B′ = (1 − ε)∆ + εB, with 0 < ε � 1, we may assume that we have
equality of divisors ∆ = A+B in (∗). We may also assume (after possibly replacing
k by a multiple) that kA is very ample and that

A =
1
k
· (very general member of |kA|).

Since A is general in the above sense, if f : Y → X is a projective birational
morphism, we may assume f∗A = Ã is the strict transform of A on Y . In this
case, (∗) will also hold for (Y, T +∆Y ): indeed, there exists an effective exceptional
divisor E′ such that f∗A− E′ is ample, hence

∆Y = (f∗A− E′) + E′ + (· · · ),

where (· · · ) is an effective divisor that does not involve T .
Caveat : we will construct various morphisms f as above starting from (X,S +

∆). We will then modify ∆ to satisfy f∗A = Ã, and therefore we need to check
how this affects the properties of f .

Step 2. Let f : Y → X be a log resolution of (X,S + ∆). After modifying
∆ as explained in Step 1, we write ∆Y = Ã +

∑
aiDi (note that f remains a log

resolution for the new ∆).

Claim 2. After blowing up intersections of the Di (and of their strict transforms).
we may assume Di ∩Dj = ∅ for all i 6= j.

The proof of the claim is standard, by induction first on the number of intersect-
ing components and then on the sum of the coefficients of intersecting components.
Note also that as long as we blow up loci that have SNC with Ã, the condition
f∗(A) = Ã is preserved.

Step 3. We need to satisfy condition 2) in Theorem 2.6. The hypothesis
implies that T 6⊂ Bs|k(KY + T + ∆Y )|. Since A is general, it follows that we only
need to worry about the components Di, and the intersections Di ∩ T that are
contained in Bs|k(KY + T + ∆Y )|.

Canceling common components, we may replace ∆Y by 0 ≤ ∆′Y ≤ ∆Y such
that no component of ∆′Y appears in the fixed part of |k(KY + T + ∆′Y )|. We put
∆′Y = Ã+

∑
i a
′
iDi.

Step 4. We now deal with intersections T ∩Di that are contained in the base
locus of |k(KY + T + ∆′Y )|. Let h : Y → Y be the blowup of T ∩ Di. Note that
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since T is smooth and T ∩Di ⊂ T is a divisor, the strict transform T̃ of T maps
isomorphically to T . Let F ⊂ Y be the exceptional divisor. We write

KY + (h∗(T + ∆′Y )− F ) = h∗(KY + T + ∆′Y ).

Note that h∗(T ) = T̃ + F , hence h∗(T + ∆′Y )− F is effective (the coefficient of F
being a′i).

On Y the divisors T̃ and D̃i are disjoint. We need to blow up again along
F ∩ D̃i, but this gives an isomorphism around T̃ . We repeat this process; however,
we can only continue finitely many times because

ordT∩F |Mob (k(KY + h∗(T + ∆′Y )− F )) |T ≤ ordT∩Di
|Mob(k(KY +T+∆′Y ))|T−1.

Step 5. We change notation to denote by (Y, T + ∆′Y ) the resulting pair (we
emphasize that T hasn’t changed starting with Step 3). We can now apply the
extension theorem for (Y, T + ∆′Y ). Consider the commutative diagram

H0(X, k(KX + S + ∆)) → H0(S, k(KX + S + ∆)|S)
↓ ↓

H0(Y, k(KY + T + ∆′Y )) → H0(T, k(KY + T + ∆′Y )|T )

The left vertical arrow is an isomorphism and the right vertical arrow is injective by
construction, while the bottom arrow is surjective by the extension theorem. Hence
writing Θ1 = ∆′Y |T , we see that the component of degree k in R|S is isomorphic to
H0(T, k(KT + Θ1)).

Step 6. In order to prove further properties of the restricted algebra, one
needs to combine the previous construction with “taking log mobile parts”. For
every m ≥ 1 write

mk(KY + T + ∆Y ) = Mm + (fixed part).

Let 0 ≤ ∆m ≤ ∆Y be such that ∆m has no common component with the above
fixed part. After possibly replacing k by a multiple, {mk(KY + T + ∆m)} is an
additive sequence. We now apply Steps 3-5 for each (Y, T + ∆m). Note that T
remains unchanged. We get models Ym → Y and divisors Θm on T such that the
kth truncation of R|S is isomorphic to

⊕m≥0H
0(T, km(KT + Θm)).

Moreover Θm ≤ Θ := ∆Y |T implies Θ′ := limm→∞Θm exists and (T,Θ′) is klt.
This proves that the restricted algebra is an adjoint algebra.





LECTURE 3

Existence of flips II

This lecture is an exposition of work of Shokurov.
Recall (from Lecture 2)

Definition 3.1. Let Y → Z be a projective morphism with Y smooth and Z affine.
An adjoint algebra is an algebra of the form

R = ⊕m≥0H
0(Y,Nm)

where Nm = mk(KY + ∆m), the limit ∆ := limm→∞∆m exists, and (Y,∆) is klt.

Remark 3.2. Note that ∆ can be an R-divisor.

In Lecture 2, it was shown that the “restricted algebra” is an adjoint algebra.

Definition 3.3. Given an adjoint algebra R(Y,N•), set Mi = MobNi, the mobile
part of Ni, and Di = 1

iMi. We say R is a-saturated if there exists a Q-divisor F
on Y , dF e ≥ 0, such that MobdjDi + F e ≤ jDj for all i ≥ j > 0.

Remark 3.4. In applications, F is always the discrepancy of some klt pair (X,∆),
f : Y → X. That is

KY = f∗(KX + ∆) + F.

We sometimes write F = A(X,∆)Y .

Example 3.5. An a-saturated adjoint algebra on an affine curve is finitely gener-
ated.

Let Y = C and P = 0 ∈ C. Let Ni = mi · 0, where mi + mj ≤ mi+j , and
Di = 1

imi · 0 = di · 0. By assumption d = limi→∞ di ∈ R exists. In this context,
a-saturation means there exists b < 1, F = −b · 0, such that

djdi − be ≤ jdj
for all i ≥ j > 0.

We want to show d ∈ Q, and d = dj for j divisible. Passing to the limit as
i→∞ we get

djd− be ≤ jdj .
Assume d /∈ Q. Then

{〈jd〉 | j ∈ N} ⊂ [0, 1]
is dense (here 〈·〉 denotes the fractional part). So, there exists j such that 〈jd〉 > b,
and then

jdj ≤ jd < djd− be ≤ jdj ,
a contradiction. So d ∈ Q. The same argument shows that dj = d if j · d ∈ Z.

Definition 3.6. An adjoint algebra R(Y,N•) is semiample if the limit D =
limi→∞

1
iMi is semiample, where Mi := Mob(Ni).

15
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Remark 3.7. We say that an R-divisor D on Y is semiample if there exists a
morphism f : Y → W with W quasiprojective such that D is the pullback of an
ample R-divisor on W . We say an R-divisor is ample if it is positive on the Kleiman–
Mori cone of curves.

Theorem 3.8. If an adjoint algebra R = R(Y,N•) is a-saturated and semiample
then it is finitely generated.

The proof is a modification of the one dimensional case, based on the following

Lemma 3.9. Let Y → Z be projective with Y smooth and Z affine and normal.
Let D be a semiample R-divisor on Y , and assume that D is not a Q-divisor. Fix
ε > 0. There exists a Z-divisor M and j > 0 such that

(1) M is free.
(2) ‖jD −M‖sup < ε
(3) jD −M is not effective.

Theorem 3.10. Assume the MMP in dimension n (precisely, MMP with scaling for
klt pairs with R-coefficients. For the definition of MMP with scaling see Lecture 4).
Let R = R(Y,N•) be an adjoint algebra. Let Ni = ik(KY + ∆i), ∆ = limi→∞∆i,
and assume KY + ∆ big. Then there exists a modification π : Y ′ → Y and N ′• such
that R = R(Y ′, N ′•) is semiample.

Remark 3.11. In the context of flips, the condition KY + ∆ big is not an issue.

The proof of the theorem is based on the following

Lemma 3.12. Let (X,∆) be a klt pair, where X is Q-factorial, ∆ is an R-divisor,
and KX + ∆ is big. Assume the MMP in dimension n. Let ∆ ∈ V ⊂ DivR X be a
finite dimensional vector space. There exist ε > 0 and finitely many g : X 99K Wi

(birational maps) such that if D ∈ V , ‖D − ∆‖ < ε, then for some i the pair
(Wi, gi∗D) is a log minimal model of (X,D).

For the proof of the lemma see Lecture 4.
That the restricted algebra is a-saturated can be proved by a straightforward

application of Kawamata–Viehweg vanishing as follows.

Theorem 3.13. If −(KX + S + ∆) is big and nef, then the restricted algebra is
a-saturated.

Proof. Let (X,S + ∆)→ Z be a pl-flipping contraction, and consider a bira-
tional morphism f : Y → X. Let T denote the strict transform of S. Write

KY + T + ∆Y = f∗(KX + S + ∆) + E,

where ∆Y and E are effective (with no common components) and E is exceptional.
Assume k(KX +S+ ∆) is integral and Cartier. Let ∆m be the largest divisor such
that 0 ≤ ∆m ≤ ∆ and

Mm := Mob(mk(KY + T + ∆m)) = Mob(mk(KY + T + ∆)).

We may assume Mm is free (for some f). Write M0
m = Mm|T . For simplicity we

only consider the case i = j, i.e., we prove

MobdM0
j + F e ≤M0

j ,

where F = A(S,∆|S)T .
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If dEe is an f -exceptional divisor, then MobdMj + Ee ≤ Mj . Choose E =
A(X,S + ∆)Y + T , so E|T = F , and consider the short exact sequence

0→ OY (Mj + A(X,S + ∆)Y )→ OY (Mj + E)→ OT (M0
j + F )→ 0.

By the Kawamata-Viehweg vanishing theorem and our assumption, we knowH1(OY (Mj+
A(X,S + ∆)Y )) = 0 (because A(X,S + ∆)Y = KY − f∗(KX + S + ∆)). Now the
a-saturated condition MobdM0

j + F e ≤M0
j is implied by MobdMj +Ee ≤Mj and

this extension result.
�





LECTURE 4

Notes on Birkar-Cascini-Hacon-McKernan

By the previous 3 lectures, we can start with the:

Assumption: We proved the existence of flips in dimension n, using minimal
models in dimension n− 1.

The main result is the following:

Theorem 4.1 (Minimal models in dimension n). Assume that ∆ is a big R-divisor,
(X,∆) is klt and K + ∆ is pseudo-effective. Then (X,∆) has a minimal model.

Let us first see some corollaries.

Corollary 4.2. ∆ is a big Q-divisor, (X,∆) is klt and K + ∆ is pseudo-effective.
Then the canonical ring∑

m≥0

H0(X,OX(mKX + bm∆c)) is finitely generated.

Proof. Get minimal model for (X,∆), then use base point freeness. �

Corollary 4.3. X smooth, projective and KX is big. Then the canonical ring∑
m≥0

H0(X,OX(mKX)) is finitely generated.

Proof. Pick some effective D ∼ mKX . Then (X, εD) is klt (even terminal)
for 0 < ε� 1 and εD is big. So (X, εD) has a minimal model. It is automatically
a minimal model for X. �

Corollary 4.4. X smooth, projective. Then the canonical ring∑
m≥0

H0(X,OX(mKX)) is finitely generated.

Proof. As in Kodaira’s canonical bundle formula for elliptic surfaces, Fujino-
Mori reduces the ring to a general type situation in lower dimension. �

Corollary 4.5. Let X be a Fano variety. Then the Cox ring∑
D∈Pic(X)

H0(X,OX(D)) is finitely generated.

Proof. See original. �

Corollary 4.6. If K+∆ is not pseudo-effective, then there exists a birational map
X 99K X ′ and a Mori fiber space X ′ → Z ′.

19
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Proof. Fix H ample and the smallest c > 0 such that K + ∆ + cH is pseudo-
effective. (Note that a priori, c may not be rational.) After MMP, we get X 99K X ′

such that K + ∆ + cH is nef on X ′. It cannot be big since then K + ∆ + (c− ε)H
would still be effective. So base point freeness gives X ′ → Z ′. �

4.1. Comparison of 3 MMP’s

In a minimal model program (or MMP) we start with a pair (X,∆) and the goal is
to construct a minimal model (X,∆)min. (Note that minimal models are usually
not unique, so (X,∆)min is a not well defined notational convenience.)

There are 3 ways of doing it.

4.1.1. Mori-MMP (libertarian)
This is the by now classical approach. Pick any extremal ray, contract/flip as
needed. The hope is that eventually we get (X,∆)min. This is known only in
dimension ≤ 3 and almost known in dimension 4.

Note that even if (X,∆) is known to have a minimal model, it is not at all clear
that every Mori-MMP starting with (X,∆) has to end (and thus yield a minimal
model).

4.1.2. MMP with scaling (dictatorial)
Fix H and t0 > 0 such that K + ∆ + t0H is nef.

Let t→ 0. For a while K+∆+tH is nef, but then we reach a critical value t1 ≤
t0. That is, there exists an extremal ray R1 such that R1 ·

(
K+ ∆ + (t1−η)H

)
< 0

for η > 0. Contract/flip this R1 and continue.
We will show that MMP with scaling works in any dimension, provided that ∆

is big and K + ∆ is pseudo-effective.

4.1.3. Roundabout MMP of BCHM
Instead of directly going for a minimal model, we start by steps that seem to make
things more complicated. Then we aim for the minimal model on a carefully chosen
path. There are 5 stages:

(1) Increase ∆ in a mild manner to ∆+.
(2) Increase ∆+ wildly to ∆+ +M .
(3) Construct (X,∆+ +M)min.
(4) Remove the excess M to get (X,∆+)min.
(5) Prove that (X,∆+)min is also (X,∆)min.

You can imagine the process as in the picture:

(X,∆++M)
3 ..

(X,∆++M)min

4

$$
(X,∆)

1,2

66

(X,∆+)min

Bending it like BCHM

(Note that the “C” of Cascini is pronounced as a “K”.) We will show that
bending works in any dimension, provided that ∆ is big and K + ∆ is pseudo
effective.

(Major side issues). My presentation below ignores 3 important points.
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(1) Difference between klt/dlt/lc. The main results are for klt pairs but many
intermediate steps are needed for dlt or lc. These are purely technical
points but in the past proofs collapsed on such technicalities.

(2) Relative setting. The induction and applications sometimes need the rel-
ative case: dealing with morphisms X → S instead of projective varieties.
The relevant technical issues are well understood.

(3) I do not explain how to prove the non-vanishing theorem: If K + ∆ is
pseudo-effective (that is, a limit of effective divisors) then it is in fact
effective.

4.1.4. Spiraling induction
We prove 4 results together as follows:

MMP with scaling in dim. n− 1

⇓ Section 4.3

Termination with scaling in dim. n near b∆c

⇓ Section 4.4

Existence of (X,∆)min in dim. n

⇓ Section 4.5

Finiteness of (X,∆ +
∑
tiDi)min in dim. n for 0 ≤ ti ≤ 1

⇓ Section 4.2

MMP with scaling in dim. n

(Finiteness questions). While we expect all 3 versions of the MMP to work for
any (X,∆), the above finiteness is quite subtle. Even a smooth surface can contain
infinitely many extremal rays, thus the very first step of the Mori-MMP sometimes
offers an infinite number of choices.

By contrast, if ∆ is big, then there are only finitely many possible models
reached by Mori-MMP. This is, however, much stronger than what is needed for
the proof.

It would be very useful to pin down what kind of finiteness to expect in general.
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4.2. MMP with scaling

Begin with K + ∆ + t0H nef, t0 > 0.
(1) Set t = t0 and decrease it.
(2) We hit a first critical value t1 ≤ t0. Here K + ∆ + t1H nef but K + ∆ +

(t1 − η)H is not nef for η > 0.
(3) This means that there exists an extremal ray R ⊂ NE(X) such that

R · (K + ∆ + t1H) = 0 and R ·H > 0.

Thus R · (K + ∆) < 0 and R is a “usual” extremal ray.
(4) Contract/flip R to get X0 99K X1 and continue.

The problem is that we could get an infinite sequence

X1 99K X2 99K X3 99K · · · .

Advantage of scaling:
In the MMP with scaling, each Xi is a minimal model for some K + ∆ + tH.

So, if we know finiteness of models as t varies then there is no infinite sequence.
Thus we have proved the implication

Finiteness of (X,∆ + tH)min in dim. n for 0 ≤ t ≤ t0
⇓

MMP with scaling in dim. n

Remark 4.7. In the Mori-MMP, the Xi are not minimal models of anything
predictable. This makes it quite hard to prove termination as above since we would
need to control all possible models in advance.

4.3. MMP with scaling near b∆c

Start with (X,S + ∆), S integral. Here (X,S + ∆) is assumed dlt and in all
interesting cases S 6= 0, so (X,S + ∆) is not klt.

We run MMP with scaling to get a series of contractions/flips

· · · 99K (Xi, Si + ∆i)
φi
99K (Xi+1, Si+1 + ∆i+1) 99K · · ·

Instead of termination, we claim only a much weaker result, traditionally known
as special termination.

Proposition 4.8. There are only finitely many i such that Si ∩ Ex(φi) 6= ∅.

Proof. This is all old knowledge, relying on 6 basic observations.
(1) We can concentrate on 1 component of S and by a perturbation trick we

can assume that S is irreducible.
(2) The discrepancy a(E,Xi, Si + ∆i) weakly increases with i and strictly

increases iff centerXi
(E) ⊂ Ex(φi).

(3) There are very few E with a(E,Xi, Si + ∆i) < 0.
(4) If Si 99K Si+1 creates a new divisor Fi+1 ⊂ Si+1, then there exists Ei+1

with a(Ei+1, Xi, Si + ∆i) < a(Ei+1, Xi+1, Si+1 + ∆i+1) ≤ 0.
(5) Combining these we see that Si 99K Si+1 creates no new divisors for i� 1.
(6) Only finitely many Si 99K Si+1 contracts a divisor, since at such a step

the Picard number of Si drops.
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Thus, for i� 1, each Si 99K Si+1 is an isomorphism in codimension 1. (Maybe
such a map could be called a traverse.)

Therefore, if X0 99K X1 · · · is an MMP with scaling, then

SN
φN |SN
99K SN+1 99K SN+1 99K · · ·

is also an MMP with scaling for N � 1, except that φi|Si
is an isomorphism

when Si ∩ Ex(φi) 6= ∅. By induction, φi|Si
is an isomorphism for i � 1, hence

Si ∩ Ex(φi) = ∅. �

Thus we have shown that

MMP with scaling in dim. n− 1
⇓

Termination with scaling in dim. n near b∆c

4.4. Bending it like BCHM

This is the hardest part. We assume termination with scaling near b∆c (for many
different X and ∆), and we prove that the roundabout MMP also works.

The proof uses 2 basic lemmas. The first one shows that under certain condi-
tions, every flip we have to do involves b∆c. The second one shows how to increase
b∆c without changing (X,∆)min.

Lemma 4.9 (Scaling to the boundary). Assume that
(1) K + ∆ ∼ cH + F for some c ≥ 0 and F ≥ 0.
(2) K + ∆ +H is nef.
(3) Supp(F ) ⊂ b∆c.

Then (X,∆ + t ·H)min exists for every 0 ≤ t ≤ 1.

Proof. (To accomodate R-divisors, ∼ can stand for R-linear equivalence.)
Start scaling. At the critical value, get a ray R such that R·H > 0 and R·(K+∆) <
0. Thus R · (cH + F ) < 0 and R · F < 0, so locus(R) ⊂ Supp(F ) ⊂ b∆c.

Thus every flip encountered in the scaling MMP intersects the boundary. Thus
we have termination. �

If we start with a klt pair (X,∆), then b∆c = 0. From condition (3) thus
F = 0 and hence K + ∆ ∼ cH. Therefore K + ∆ ∼ c

c+1 (K + ∆ +H) is nef and we
have nothing to do. Conclusion: We need a way to increase ∆ without changing
the minimal model!

Lemma 4.10 (Useless divisor lemma). If ∆′ ⊂ stable base locus of (K + ∆), then
(X,∆ + ∆′)min = (X,∆)min.

Proof. Note that
(∆′)min ⊂ stable base locus of (K + ∆)min

||
stable base locus of (K + ∆ + ∆′)min

However, (K + ∆ + ∆′)min is base point free, thus (∆′)min = 0, and so (X,∆ +
∆′)min = (X,∆)min. �
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Corollary 4.11. We can always reduce to the case when the stable base locus of
K + ∆+ is in b∆+c.

Proof. First we can take a log resolution to assume that (X,∆) has simple
normal crossings only. Write the stable base locus as

∑r
i=1Di and ∆ =

∑r
i=1 diDi+

(other divisors), where di = 0 is allowed. Set ∆′ :=
∑r
i=1(1− di)Di. Then ∆+ :=

∆ + ∆′ =
∑r
i=1Di + (other divisors) and b∆ + ∆′c ⊃

∑r
i=1Di. �

4.12 (Bending I: K + ∆ is a Q-divisor).
We proceed in 6 steps:
(0) Write K + ∆ ∼ rM + F where M is mobile, irreducible and F is in the

stable base locus.
(1) Take log resolution. With ∆′ as above, set ∆+ := ∆ + ∆′ and F+ :=

F + ∆′. Then K + ∆+ ∼ rM + F+ and Supp(F+) ⊂ b∆+c.
(2) Add M to ∆+ and pick an ample H to get

(a) K + ∆+ +M ∼ 0 ·H +
(
(r + 1)M + F+

)
(b) K + ∆+ +M +H is nef, and
(c) Supp(M + F+) ⊂ b∆+ +Mc.

(3) Scale by H to get (X,∆+ +M)min. Now we have:
(a) K + ∆+ ∼ rM + F+.
(b) K + ∆+ +M is nef.
(c) Supp(F+) ⊂ b∆+c.

(4) Scale by M to get (X,∆+)min.
(5) By the useless divisor lemma, (X,∆+)min = (X,∆)min.

4.13 (Bending II: K + ∆ is an R-divisor).
We follow the same 6 steps, but there are extra complications.
(0) Write K + ∆ ∼ riMi + F , where the Mi are mobile, irreducible and F is

in the stable base locus. (This is actually not obvious.)
(1–3) goes as before and we get

(a) K + ∆+ ∼
∑
riMi + F+

(b) K + ∆+ +
∑
Mi is nef, and

(c) Supp(F+) ⊂ b∆+c.
(4) Let me first describe 2 attempts that do not work.

(First try): Scale
∑
Mi. The problem is that

∑
riMi 6= c

∑
Mi.

(Second try): Scale M1. This works, but the support condition (c)
fails at next step when we try to scale M2.

(Third try): Do not take all of M1 away at the first step.
Reorder the indices so that r1 ≤ r2 ≤ · · · ≤ rk. We then construct

inductively minimal models for(
X,∆+ + 1

rj
(r1M1 + · · ·+ rj−1Mj−1) +Mj + · · ·+Mk

)
We already have the j = 1 case. Let us see how to do j → j + 1.
By assumption K+∆++ 1

rj
(r1M1+ · · ·+rj−1Mj−1)+(Mj+ · · ·+Mk)

is nef. Move Mj from the right sum to the left. Thus now we have:
(a) K + ∆+ ∼ (r1M1 + · · ·+ rjMj) + (rj+1Mj+1 + · · ·+ rkMk + F+)
(b) K + ∆+ + 1

rj
(r1M1 + · · ·+ rjMj) + (Mj+1 + · · ·+Mk) is nef, and

(c) Supp(rj+1Mj+1 + · · ·+ rkMk + F+) ⊂ bMj+1 + · · ·+Mk + ∆+c.
Scale r1M1 + · · · + rjMj with scale factor rj/rj+1. This gives the j + 1
case.
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At the end (and after moving Mk into the sum) we have:
(a) K + ∆+ ∼

∑
riMi + F+

(b) K + ∆+ + 1
rk

(r1M1 + · · ·+ rkMk) is nef.
(c) Supp(F+) ⊂ b∆+c.

Now we can scale by r1M1 + · · ·+ rkMk to get (X,∆+)min.
(5) By the useless divisor lemma, (X,∆+)min = (X,∆)min.

Thus we have proved that

Termination with scaling in dim. n near b∆c
⇓

Existence of (X,∆)min in dim. n

4.5. Finiteness of models

More generally, we claim that the set of models (X,∆w)min is finite as ∆w moves
in a compact set of R-divisors satisfying 3 conditions:

(1) Every ∆w is big. Note that being big is not a closed condition and it would
be very good to remove this restriction. Without it one could get minimal
models for non-general type (X,∆) by getting (X,∆ + ε(ample))min and
then letting ε→ 0.

(2) Every K+∆w is effective. By definition, being pseudo-effective is a closed
condition. It is here that non-vanishing comes in: it ensures that being
effective is also a closed condition.

(3) K + ∆w is klt. This is preserved by making ∆w smaller, which is what
we care about.

By compactness, it is enough to prove finiteness locally, that is, finiteness of
the models (X,∆′ +

∑
tiDi)min for |ti| ≤ ε (depending on ∆′). (Important point:

Even if we only care about Q-divisors, we need this for R-divisors ∆′!)

Proof. Induction on r for D1, . . . , Dr. Let (Xm,∆m) := (X,∆′)min. By the
base point free theorem, we have g : Xm → Xc such that KXm + ∆m ∼ g∗(ample).

So, for |ti| � 1, g∗(ample) �
∑
tiDi, except on the fibers of g. (This is more

delicate than it sounds, but not hard to prove for extremal contractions.)
Thus the MMP to get (Xm,∆m+

∑
tiDi)min is relative to Xc. We can switch

to working locally over Xc, we thus assume that KXm + ∆m ∼ 0. So

KXm + ∆m + c
∑

tiDi ∼ c
(
KXm + ∆m +

∑
tiDi

)
Therefore (Xm,∆m +

∑
tiDi)min = (Xm,∆m + c

∑
tiDi)min. For (t1, . . . , tr)

choose c such that maxi |cti| = ε, that is, (ct1, . . . , ctr) is on a face of [−ε, ε]r. Ths
shows that we get all possible (Xm,∆m +

∑
tiDi)min by computing (Xm,∆m +∑

tiDi)min only for those (t1, . . . , tr) which are on a face of the r-cube [−ε, ε]r.
The faces are 2r copies of the (r−1)-cube. So we are done by induction on r.

The notation (X,∆)min helped us skirt the issue whether there may be infinitely
many minimal models for a given (X,∆). (This happens in the non-general type
cases, even for smooth minimal models.) This is, however, no problem here. We
found one Q-factorial model g : Xm → Xc such that KXm is numerically g-trivial.



26 LECTURE 4. NOTES ON BIRKAR-CASCINI-HACON-MCKERNAN

Let D1, . . . , Dr be a basis of the Néron-Severi group. Every other model where
K + ∆ is nef lives over Xc and some

∑
tiHi is g-ample on it. We can thus find

every such model as a canonical model for (X,∆ + ε
∑
tiHi) for 0 < ε� 1. �

We have now proved that

Existence of (X,∆)min in dim. n
⇓

Finiteness of (X,∆ +
∑
tiDi)min in dim. n for 0 ≤ ti ≤ 1

and the spiraling induction is complete.
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