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SMOOTHING GORENSTEIN TORIC FANO 3-FOLDS

ALESSIO CORTI, PAUL HACKING, AND ANDREA PETRACCI

Abstract. We introduce admissible Minkowski decomposition data (amd) for a 3-dimensional re-
flexive polytope P . This notion is defined purely in terms of the combinatorics of P . Denoting by
XP the Gorenstein toric Fano 3-fold whose fan is the spanning fan (a.k.a. face fan) of P , our first
result states that amd for P determine a smoothing of XP . Our second result amounts to an effective
recipe for computing the Betti numbers of the smoothing.

In the companion paper [11] we study by computer millions of amd for the 4, 319 3-dimensional
reflexive polytopes, and in particular recover the 98 families of Fano 3-folds whose anticanonical line
bundle is very ample.
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1. Introduction

1.1. Summary of the paper and short discussion of its context. Our first result is Theorem 1.17:
a sufficient condition for smoothing a Gorenstein toric Fano 3-fold starting from admissible Minkowski
decomposition data (amd), see Definition 1.10. Note that, because ampleness is an open condition, the
smoothing is a Fano 3-fold. Our second result is Theorem 1.20 — and the more precise Theorem 7.2
— implying an effective recipe for computing the Betti numbers of the smoothing from the amd.

Gorenstein toric Fano 3-folds are in correspondence with 3-dimensional reflexive polytopes, where
the polytope P corresponds to the toric variety XP whose fan is the spanning fan, also known as the
face fan, of P . Our main result states that a smoothing of XP can be constructed from amd for P .

These results are not optimal — see Remark 1.19 — but they are applicable to a very large, though
of course finite, set of examples. Our Theorems 1.20 and 7.2 allow to compute the Betti numbers of
the smoothing from the amd. In [11] the technology is applied to construct smoothings of Gorenstein
toric Fano 3-folds and compute their Betti numbers from millions of amd.

Our results go some way towards explaining the facts on mirror symmetry for Fano 3-folds first
observed “experimentally” in [12, 1]. Indeed, starting from amd for a reflexive polytope P , in this
paper we construct:

(A) A smoothing X of the toric Fano 3-fold XP . The companion paper [11], using Theorems 1.20
and 7.2, locates X in the Mori–Mukai classification;

On the other hand, as explained in [1], amd for P give:

(B) A Laurent polynomial w with Newton polytope P , called a Minkowski polynomial. Paper [1]
computes the classical period of w.

Paper [12] computes the regularized quantum periods of all the Fano 3-folds in the Mori–Mukai list,
and it can be seen from the outcome of the computation that the classical period of w equals the
regularized quantum period of the smoothing.

In other words, we now have constructions for both the A and the B sides of mirror symmetry
starting from the same combinatorial data.∗ However, we are still missing a conceptual explanation of
why the two periods are equal. This would follow if we had the technology for computing the quantum
cohomology of the smoothing from the toric degeneration and the amd. The technology does not yet
exist, but the paper [23] proves some encouraging results in this direction.

This paper is a first step in a program to construct deformations of toric Fano varieties systemati-
cally, where the ultimate goal is to prove a general form of the Fano/Landau–Ginzburg correspondence,
with application to the classification of Q-Fano 3-folds — see [13] — and Gorenstein terminal Fano
4-folds.

∗We are oversimplifying. The Minkowski polynomial only depends on the choice, for all facets F ≤ P , of (a) an
admissible Minkowski decomposition of F . However, according to Definition 1.10, amd for P involve a further choice,
for all F , of (b) a dual tropical arrangement satisfying the matching condition (c) on dull edges. Now fix (a) and assume
that we can also further choose (b) such that (c) holds: we don’t know how to prove from first principles that these
additional choices lead to deformation equivalent smoothings. (But it is not very difficult to show that the smoothings
have the same Betti numbers.)
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Remark 1.1. The work of Thomas Prince [45, 46, 47] presents a different perspective on the questions
studied here.

1.2. Outline of the Introduction. In § 1.3 and § 1.4 we state our results precisely; we also define
the notions and explain the constructions that enter the statements.

In § 1.5 we explain some key ideas of the proof, in § 1.6 we give an outline of the paper; § 1.7 collects
notation in use throughout.

1.3. Smoothing Gorenstein toric Fano 3-folds.

Definition 1.2. An A−1-triangle is a lattice segment of lattice length 1. If n is a non-negative integer,
an An-triangle is a lattice polygon Z2 ⋊GL2(Z)-equivalent to the triangle [(0, 0), (0, 1), (n+ 1, 1)]. An
A-triangle is an An-triangle for some integer n ≥ −1, see Figure 1.

Figure 1. An A−1-triangle, an A0-triangle, an A1-triangle and an A2-triangle.

Definition 1.3. The Minkowski sum of lattice polytopes F1, . . . , Fr in a lattice L is the lattice poly-
tope†

F1 + · · ·+ Fr = {v1 + · · ·+ vr | v1 ∈ F1, . . . , vr ∈ Fr}

A Minkowski decomposition of a lattice polytope F is a tuple of lattice polytopes whose Minkowski
sum is F . These lattice polytopes are called Minkowski summands of F .

Definition 1.4. Let L be a lattice of rank 2 and let F be a lattice polygon in L. An admissible
Minkowski decomposition of F is a Minkowski decomposition where each Minkowski summand is an
A-triangle. Minkowski decompositions that differ by reordering and translating the summands are
considered to be the same.

Example 1.5. The hexagon F = [(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1)] in the lattice Z2 has
two admissible Minkowski decompositions, see Figure 2: one into three A−1-triangles

(1.1) F = [(0, 0), (1, 0)] + [(0, 0), (0, 1)] + [(0, 0), (−1,−1)]

and one into two A0-triangles

(1.2) F = [(0, 0), (−1, 0), (−1,−1)] + [(0, 0), (1, 0), (1, 1)]

= + = + +

Figure 2. The two admissible Minkowski decompositions of the hexagon in Example 1.5.

Example 1.6. Some polygons have no admissible Minkowski decompositions, e.g. the triangle
[(−1,−1), (2,−1), (−1, 1)] and the triangle [(−1,−1), (1, 0), (0, 1)] in Z2, see Figure 3.

†We adopt the convention of never putting punctuation at the end of displayed formulas. It is impossible to give rules,
there are just too many cases. Our convention has the double advantage that it is simple and easy to use consistently.
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Figure 3. These polygons have no admissible Minkowski decomposition.

Definition 1.7. Fix a plane polygon F and admissible Minkowski decomposition m = (F =
∑
Fj).

To each Minkowski summand Fj is attached a dual tropical curve Γj, see Theorem A.6 and its proof.
A dual tropical arrangement subordinated to m is a generic plane arrangement of the Γj .

A dual tropical arrangement induces, for every edge e ⊂ F , a partition of the set Le of unit segments
of e. The parts of the partition are indexed by the Γj so that the part corresponding to Γj is the set of
unit segments that have a leg of Γj going through them. We call this partition the induced partition.

A dual tropical arrangement also induces a lattice polyhedral subdivision of F , which we call the
induced subdivision.

These concepts are illustrated in Figures 4, 5 and 6.

Remark 1.8. The tropical curve Γ = ∪Γj has trivalent and 4-valent vertices only.
The induced subdivision is a coherent fine mixed subdivision, see Theorem A.6, but we don’t need

this language nor the fact now.
Figures 4, 5 and 6 show examples of dual tropical arrangements and induced subdivisions.

Figure 4. Dual tropical arrangements and induced subdivisions for the admissible
Minkowski decomposition of the hexagon into two A0-triangles.

Definition 1.9. Let P be a 3-dimensional reflexive polytope, and e ≤ P an edge of P .
The length of e, denoted by ℓe, is the integral length of e. The colength of e, denoted by ke, is the

length of the dual edge e⋆ ≤ P ⋆ of the polar polytope P ⋆.
The edge e is dull if it has colength ke = 1.

Definition 1.10. Let P be a 3-dimensional reflexive polytope. An admissible Minkowski decomposition
data (amd) for P consists of the following:

(a) A choice, for all facets F ≤ P , of an admissible Minkowski decomposition F =
∑
Fj ;

(b) A choice, for all facets F ≤ P , of a dual tropical arrangement subordinated to the admissible
Minkowski decomposition in (a).

For all dull edges e ⊂ P , the choices above are required to satisfy the matching condition at e that we
describe next. Let F,G ≤ P be the facets incident along e. The set Le of unit segments of e has two
induced partitions. The first of these is induced by the Minkowski decomposition F =

∑
Fi, and we
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Figure 5. Dual tropical arrangements and induced subdivisions for the admissible
Minkowski decomposition of the hexagon into three A−1-triangles.

Figure 6. More dual tropical arrangements and induced subdivisions.

denote by LFi the part corresponding to Fi. The second is induced by the Minkowski decomposition
G =

∑
Gj , and we denote by LGj the part corresponding to Gj .

The matching condition at e is the following statement:

(c) For all i, j, |LFi ∩ LGj | ≤ 1.

Notation 1.11. Let P be a 3-dimensional reflexive polytope endowed with choices, for all facets, of
(a) admissible Minkowski decompositions and (b) dual tropical arrangements.

Let X be the Gorenstein toric Fano 3-fold whose fan is the spanning fan of P .
For all facets F of P , the dual tropical arrangement induces a subdivision of the cone σF = 〈F 〉+

and hence a toric partial resolution of the corresponding Zariski open subset XσF
⊂ X .

These subdivisions combine to give a refinement of the fan of X and hence the corresponding local
toric partial resolutions glue to a global toric partial resolution of X that we call the induced partial
resolution and denote by π : Y → X .

Note that, in general, π : Y → X is not a projective morphism.

Definition 1.12. A quasi-ordinary double point, abbreviated qODP, is a Gorenstein toric 3-fold sin-
gularity locally analytically — or, depending on the context, étale locally — isomorphic to the germ
at the origin of

(x1x2 − x3x4 = 0) ⊆
1

a
(1,−1, b,−b)x1,x2,x3,x4
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for some positive integers a, b such that gcd(a, b) = 1.

Lemma 1.13. A Gorenstein toric 3-fold singularity is a qODP if and only if it corresponds to the
cone over a parallelogram with edges of unit length.

The qODP is an ordinary double point (ODP) — i.e., a = 1 — if and only if the parallelogram does
not have interior points. �

Lemma 1.14. Let P be a 3-dimensional reflexive polytope endowed with amd, X the corresponding
Gorenstein toric Fano 3-fold, and π : Y → X the induced partial resolution. Then

(1) Y is Gorenstein and the morphism π : Y → X is crepant, that is KY = π⋆KX;
(2) Y has qODPs;
(3) The pair (Y,E) is isomorphic, Zariski locally at all closed points y ∈ Y , either to a normal crossing

pair, or a qODP with E = {x1x2 = x3x4 = 0}.

Proof. The first statement is obvious from the toric geometry: the rays of the subdivision are by
construction generated by vectors that lie on F .

It is clear from the tropical curve picture that the cones of the fan of Y are either basic simplices,
or cones over plane parallelograms with edges of lattice length = 1. �

Remark 1.15. A toric Gorenstein affine 3-fold Xσ has a qODP singularity at the origin if and only if
σ is the cone over a plane integral parallelogram with edges of unit integral length, placed at height 1.

The computations in [3, (7.3) Proposition] show that the natural obstruction space of qODP that
are not ODP is nontrivial.

The deformation theory of the stack [ODP/µa] is better behaved.

Definition 1.16. A qODP stack is a Deligne–Mumford (DM) stack Y which is locally analytically —
or, depending on the context, étale locally — isomorphic to either a smooth scheme or the DM stack:

[(x1x2 − x3x4 = 0) /µa]

where x1, . . . , x4 are coordinates on C4 and µa acts with weights (1,−1, b,−b) for some positive integers
a, b such that gcd(a, b) = 1.

A qODP stack pair (Y,E) is a pair of a 3-fold DM stack Y together with an effective Cartier divisor
E ⊂ Y which is locally analytically — or, depending on the context, étale locally — isomorphic to:
either a normal crossing pair, or a qODP stack with E = {x1x2 = x3x4 = 0}.

Theorem 1.17. Let P be a 3-dimensional reflexive polytope endowed with amd, X the corresponding
toric Fano 3-fold, and π : Y → X the induced partial resolution. Then:

(1) The pair (Y,E), regarded as a qODP stack in the obvious way, is unobstructed and smoothable;
(2) If Yt is a general smoothing of Y , then Yt is a weak Fano 3-fold and, denoting by

R(Yt,−KYt
) =

∞⊕

n=0

H0(Yt,−nKYt
)

the anticanonical ring of Yt, the anticanonical morphism

πt : Yt → Xt = ProjR(Yt,−KYt
)

contracts a finite number of disjoint nonsingular rational curves with normal bundle O(−1)⊕
O(−1);

(3) Xt is a Fano 3-fold with ODPs as singularities and it is a deformation of X.

Remark 1.18. By Namikawa [41, Theorem 11] Xt is unobstructed and smoothable; hence X itself is
smoothable. In the display diagram Xη is a generic smoothing of Xt:

Y

π

��

Yt

πt

��

oo o/ o/ o/

X Xtoo o/ o/ o/ Xηoo o/ o/ o/
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Remark 1.19. (1) See [43] for some examples and counterexamples when the matching condition is
not satisfied.

(2) Theorem 1.17 is not optimal. For example consider the polytope P with vertices the columns of
the matrix 


−1 2 −1 0
−1 −1 1 0
−1 −1 −1 1




P is the convex hull of the polygon F of Fig. 3, left, placed at height −1, and the vector (0, 0, 1).
Because F has no admissible Minkowski decomposition, there is no amd for P . However, one can
see that the Fano XP is smoothable. In fact, the local moduli space of XP has two components,
one smoothing to X1,1 ⊂ P2 × P2 and the other to P1 × P1 × P1. See [14] for a conjectural
characterization of smoothing components of Gorenstein toric affine 3-folds.

(3) A conjectural characterization of all deformations of Q-Gorenstein toric Fano 3-folds to Q-factorial
3-folds with terminal singularities can be found in [13].

1.4. Understanding the topology of the smoothing. Consider a general smoothing Yt of Y as
provided by Theorem 1.17. In order to determine the topology of Xη, it is necessary to study the
morphism πt : Yt → Xt.

Theorem 1.20. Let P be a 3-dimensional reflexive polytope endowed with amd, X the corresponding
toric Fano 3-fold, and π : Y → X the induced toric partial resolution.

For all edges e ≤ P , define ne ∈ N as follows. Let F,G ≤ P be the facets incident at e, F =
∑
Fi,

G =
∑
Gj their admissible Minkowski decompositions, and LFi , L

G
j the corresponding parts of the

induced partitions of Le. Define

ne = ke

(
ℓe
2

)
−
∑

i

(
|LFi |

2

)
−
∑

j

(
|LGj |

2

)

Then Xt has precisely

n =
∑

ℓe≥2

ne

ODPs. Correspondingly, Yt has precisely n disjoint nonsingular rational curves with normal bundle
O(−1)⊕O(−1).

Theorem 7.2 is a more precise version of the statement just made.

1.5. Some ideas of the proof. We want to study deformations of X . We prefer to work with
deformations of the pair (X,D). These are controlled by ΩX(logD), see Definition B.10, and its
dual sheaf TX(− logD). A nice thing about pairs is that Aut0(X,D) = T is the torus, and that
the sheaf of infinitesimal automorphisms TX(− logD) = OX ⊗ N is the trivial sheaf and hence has
vanishing higher cohomology. The deformation theory of the pair (X,D) is complicated and poorly
understood. On the other hand, it is easy to see that the pair (Y,E), regarded as a qODP stack in
the obvious way, is unobstructed and smoothable. It is also easy to see by well-understood means
that all deformations (Yt, Et), t ∈ T of (Y,E) can be blown down to deformations (Xt,Dt), t ∈ T
of (X,D). The plan is to work only with the deformations of (X,D) that arise in this way from
deformations of (Y,E). To understand these deformations we need to study the contraction morphism
πt : Yt → Xt. Theorem 1.17 follows easily from Lemma 5.2, which establishes some simple facts about
the geometry of the contraction morphism. In that lemma, we prove things about πt : Yt → Xt for a
general t ∈ MY,E, the miniversal deformation of (Y,E). The key difficulty is that we do not have an
explicit description of (Yt, Et). The result is derived from studying many particular deformations that
one can write down explicitly. These are the T-equivariant deformations, also known as homogeneous
deformations, defined over eigenspaces of the torus action on T1

Y,E .
The proof of Theorem 1.20 is harder; an informal discussion can be found at the beginning of

§ 6. A recurrent theme of the proof is the correspondence between: (i) coherent mixed subdivisions
of a polytope F subordinated to a Minkowski decomposition, (ii) regular subdivisions of the Cayley
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polytope, and (iii) arrangements of dual tropical hypersurfaces. The correspondence allows us to study
the geometry of the very high-dimensional and complicated deformation spaces associated with the
Cayley polytope by drawing simple diagrams of tropical curves in the plane.

1.6. Summary of the paper. In Section 2 we collect some facts about toric (also known as homo-
geneous) deformations. Most of these are known, see for example the paper of Petracci [44] and the
references therein, but the statements in the literature are not always written in a way that they can
be applied off-the-shelf to our situation.

Section 3 proves some explicit results concerning the deformation theory of the pair (Y,E): this is
straightforward combinatorics.

Section 4 uses the deformation theory of the pair (Y,E) to construct a particular homogeneous
deformation and establish some of its properties, thus completing the discussion of homogeneous
deformations started in Section 2.

In Section 5 we prove Theorem 1.17, and in Section 7 we prove Theorem 1.20, after some prelimi-
naries discussed in Section 6.

In the Appendices we synthesise mostly known facts for which there may not be a convenient
reference to a statement in the literature that can be applied off-the-shelf to our situation.

In Appendix A we summarize some facts on the combinatorics of lattice polyhedra, specifically the
correspondence between: (i) coherent mixed subdivisions of a polytope F subordinated to a Minkowski
decomposition, (ii) regular subdivisions of the Cayley polytope, and (iii) arrangements of dual tropical
hypersurfaces. These results are well-known lore in the lattice polyhedra community but we could not
find in the literature a complete statement that would apply off-the-shelf to our situation.

In Appendix B we develop the general theory of deformations of pairs (X,D) of a scheme and
effective Cartier divisor. This is basically a long exercise in deformation theory. The results must be
well-known to many algebraic geometers but, surprisingly given the vast amounts of existing literature
on deformation theory, we could not find them written up anywhere.

The purpose of Appendix C is to write down explicitly some miniversal deformation families of pairs
(Y,E) that are needed in the proof of Theorem 6.1, which in turn is the main ingredient in the proof
of Theorem 1.20. This would be an exercise, were it not for the fact that several of these families are
infinite-dimensional. We address the infinite-dimensionality carefully by working in the language of
ind-schemes (fortunately, we only need the definition and none of the theory of ind-schemes).

In Appendix D we summarize Rim’s theory of (formal) equivariant G-structures on versal deforma-
tions.

We refer the reader to the beginning of each section for a more detailed discussion of its contents.

1.7. Notation and conventions.

Definition 1.21. A toric pair is a pair (X,D) of a toric variety X and toric boundary divisor D.

The table and diagrams summarize notation in use throughout the paper. More notation is spelled
out in § 3.1.

X Gorenstein toric Fano 3-fold (except in § 2.2 and 2.3)
X Gorenstein toric affine 3-fold (in § 2.2 and 2.3)
π : Y → X induced partial resolution of X with qODPs
D toric boundary of X
E toric boundary of Y
Γ toric 1-skeleton of X
∆ toric 1-skeleton of Y
p : ∆ → Γ natural morphism
ν : ∆′ → ∆ the partial normalisation of ∆ defined in § 3.1
p′ = p ◦ ν : ∆′ → Γ natural morphism
f : (X ,D) → S deformation of the pair (X,D) over a base scheme S
g : (Y, E) → S deformation of the pair (Y,E) over a base scheme S
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∆′

p′   ❆
❆❆

❆❆
❆❆

❆
ν // ∆

p

��

�

� // E

��

�

� // Y

π

��
Γ �
� // D �

� // X

(Y,E)

��

π

$$■
■■

■■
■■

■■

�

� // (Y, E)

g

��

Π

$$■
■■

■■
■■

■■

(X,D)

zz✉✉
✉✉
✉✉
✉✉
✉

�

� // (X ,D)

f
zz✉✉
✉✉
✉✉
✉✉
✉✉

{0} �
� // S

1.8. Leitfaden.

A +3 2

�#
❄❄

❄❄
❄❄

❄

❄❄
❄❄

❄❄
❄ 3

{� ⑧⑧
⑧⑧
⑧⑧
⑧

⑧⑧
⑧⑧
⑧⑧
⑧

��

Bks

D +3 4

��
5

��
6

��

Cks

7
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EP/N03189X/1. PH was supported by NSF grants DMS-1901970 and DMS-2200875. PH and AC
thank IHES for support in Summer 2023 and 2024, when parts of this project were completed.

2. Homogeneous deformations I

This section is a synthesis of mostly known facts due to Altmann [2, 4], Mavlyutov [40], Ilten [30],
Matsushita [39], and Petracci [44] (this list of references is not attempting to be complete).

The reader who wishes to understand quickly the idea of the proof of Theorem 1.17 is advised to
read the statements of purpose § 2.1, and then jump to Section 5.

2.1. Statement of purpose. Fix a 3-dimensional reflexive polytope P .

(1) Let F ≤ P be a facet. Fix a Minkowski decomposition F =
∑r
j=1 Fj . Consider the cone σ = 〈F 〉+

and the corresponding affine toric pair (XF , DF ). In § 2.2 we recall Altmann’s construction of a
deformation

(XF , DF )
�

� //

��

(XF ,DF )

f

��
{0} �

� // Ar

that we call the local Altmann deformation.
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(2) In § 2.3 we show that the local Altmann deformation can be simultaneously partially resolved. In
other words, choose a dual tropical arrangement subordinated to the Minkowski decomposition of
F , and let πF : (YF , EF ) → (XF , DF ) be the induced partial resolution. There exists a diagram of
deformations:

(YF , EF )

��

π

&&▼▼
▼▼

▼▼
▼▼

▼▼

�

� // (YF , EF )

g

��

Π

&&▲▲
▲▲

▲▲
▲▲

▲▲

(XF , DF )

xxqqq
qq
qq
qq
qq

�

� // (XF ,DF )

f
xxrrr

rr
rr
rr
rr

{0}
�

� // Ar

(3) In § 2.4 we show that the local Altmann deformation can be globalized. In other words, let
(XP , DP ) be the 3-dimensional Fano toric pair corresponding to the polytope P . There is a
deformation

(XP , DP )
�

� //

��

(X ,D)

f

��
{0} �

� // Ar

that induces the local Altmann deformation of (XF , DF ). We call this the global Altmann defor-
mation.

(4) In § 2.5 we state that the analytification of the global Altmann deformation can be simultaneously
partially resolved. (The statement is proved in Section 4.) In other words, fix amd for the whole
polytope P that restrict to the given one on the facet F , and let π : (Y,E) → (XP , DP ) be the
induced partial resolution.

Denote by San the analytic germ of 0 ∈ Ar and by fan : (X an,Dan) → San the analytification
of the global Altmann deformation. There exists a diagram of complex analytic deformations:

(Y,E)

��

π

##❍
❍❍

❍❍
❍❍

❍❍

�

� //
(
Yan, Ean

)

gan

��

Πan

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

(X,D)

zz✈✈
✈✈
✈✈
✈✈
✈

�

� //
(
X an,Dan

)

fan

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣

{0}
�

� // San

This last deformation will be a crucial ingredient of the proof of our main results. (The existence
of this deformation gan : (Yan, Ean) → San is a natural and unsurprising fact.)

2.2. The local Altmann deformation and its properties.

Notation 2.1. We work with lattices N ∼= Zn, M = Hom(N,Z), and the torus T = SpecC[M ] ∼= Gnm.
When m ∈M , we denote by χm ∈ C[M ] the corresponding character of T.

Proposition 2.2. Let N be a lattice of rank n − 1 and let F ⊂ N be a (n − 1)-dimensional lattice
polytope endowed with a Minkowski decomposition

F = F1 + · · ·+ Fr

Consider the Gorenstein cone σ = 〈F×{e0}〉+ ⊂ N = N⊕Ze0 and the corresponding n-dimensional
affine toric pair (XF , DF ).
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Consider the commutative diagram:

(XF , DF )
�

� //

��

(X ,D)

f

��
{0} �

� // Ar

where

(i) Write M̃ = Hom(Ñ ,Z) = M ⊕ Ze⋆0 ⊕ Ze⋆1 ⊕ · · · ⊕ Ze⋆r. X = SpecC[σ̃∨ ∩ M̃ ] is the (n + r)-
dimensional affine toric variety corresponding to the cone

σ̃ = 〈e0, F1 + e1, . . . , Fr + er〉+ ⊂ Ñ = N ⊕ Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zer

and D =
(
χe

⋆
0 = 0

)
.

(ii) The morphism f : X → Ar
C
is given by the r functions χe

⋆
1 − χe

⋆
0 , . . . , χe

⋆
r − χe

⋆
0 .

(iii) The closed embedding X →֒ X is the toric morphism induced by the lattice homomorphism

N = N ⊕ Z →֒ Ñ = N ⊕ Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zer

defined by (v,m) 7→ v +m(e0 + e1 + · · ·+ er).

Then:

(1) X is Gorenstein; indeed its toric boundary divisor is
(
χe

⋆
0+e

⋆
1+···+e⋆r = 0

)
⊂ X

(2) The morphisms f : X → Ar
C
and its restriction D → Ar

C
are flat of relative dimension n and n− 1,

and the fibres over the origin are X and D.

Definition 2.3. The diagram of Proposition 2.2 is the local Altmann deformation of the pair (XF , DF )
associated with the given Minkowski decomposition of F .

Proof of Proposition 2.2. The key point is to show that the morphisms f : X → Ar
C
and its restriction

D → Ar
C
are flat of relative dimension n and n − 1. Because all toric varieties are Cohen–Macaulay,

this follows from the fact that the r functions χe
⋆
1 −χe

⋆
0 , . . . , χe

⋆
r −χe

⋆
0 form a regular sequence, see [18,

Exercise 18.18]; alternatively, see [53, Tag 00HT] and [38, Theorem 23.1]. �

Definition 2.4. Let (V,B) be an affine toric pair. A variety X has V -singularities along a Zariski
closed subset Z ⊂ X if there exist Zariski open subsets Z ⊂ U in X and B ⊂W in V such that

U ∼=W

Proposition 2.5. Let N be a lattice of rank n− 1, F = F1 + · · ·+ Fr ⊂ N a lattice polytope endowed
with a Minkowski decomposition, σ = 〈F × {1}〉+ ⊂ N = N ⊕ Z, (XF , DF ) the corresponding affine
toric pair, and

(XF , DF )
�

� //

��

(X ,D)

f

��
{0} �

� // Ar

the local Altmann deformation.
Let C ⊂ K be a field extension and

a : C[t1, . . . , tr] → K

a C-algebra homomorphism such that the aj = a(tj) ∈ K are pairwise distinct and non-zero. Consider
the base change

(Xa, Da)

��

�

� // (X ,D)

f

��
SpecK �

�

a
// Ar

https://stacks.math.columbia.edu/tag/00HT
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For all 1 ≤ j ≤ r let σj = 〈Fj × {1}〉+ ⊂ N and

Vj = SpecC[σ∨
j ∩M ]

(1) The singular locus of Xa consists of a disjoint union of connected components, where Xa intersects
transversely the singular locus of X . These components are in bijective correspondence with the
Vj that are singular, and Xa has Vj-singularities along them.

(2) The divisor Da = D ∩Xa ⊂ Xa is nonsingular and disjoint from the singular locus of Xa.

Remark 2.6. The key cases are K = C (general fibre) and K = C(t1, . . . , tr) (generic fibre).

Proof of Proposition 2.5. We work over K, setting

XK = X ×SpecC SpecK, DK = D ×SpecC SpecK

etcetera, and we view a ∈ Ar(K) as a K-valued point.

Claim 2.7. For all j = 1, . . . , r consider the subcone σ̃j = 〈Fj + ej〉+ ⊂ σ̃ and the Zariski open affine
toric subscheme

Uj = SpecK[σ̃∨
j ∩ M̃ ] ⊂ XK

with its toric boundary Dj ⊂ Uj. Also consider the subcone σ̃0 = 〈e0〉+ ⊂ σ̃ and the Zariski open

U0 = SpecK[σ̃∨
0 ∩ M̃ ] ⊂ XK with toric boundary D0 ⊂ U0.

(1) For all j = 0, . . . , r write uj = e⋆0 + · · ·+ ê⋆j + · · ·+ e⋆r ∈ M̃ . We have

Uj = {χuj 6= 0} ⊂ XK and Dj =
(
χe

⋆
j = 0

)
⊂ Uj

(2) For all j = 0, . . . , r write Nj = N ⊕ Zej and Mj = Hom(Nj ,Z) =M ⊕ Ze⋆j so that, for example

M̃ =Mj ⊕ Ze⋆0 ⊕ · · · ⊕ Ẑe⋆j ⊕ · · · ⊕ Ze⋆r

We will need the r-dimensional tori:

Tj = SpecK[Ze⋆0 ⊕ · · · ⊕ Ẑe⋆j ⊕ · · · ⊕ Ze⋆r ]

For j ≥ 1, let σj = 〈Fj × {ej}〉+ ⊂ Nj, and let σ0 = 〈e0〉+ ⊂ N0. Then

(Uj , Dj) = (Vj × Tj , Bj × Tj) where Vj = SpecK[σ∨
j ∩Mj] and Bj ⊂ Vj is the toric boundary

Note that the notation in the claim is compatible, by a small abuse, with the statement of the
proposition. The proof of the claim is straightforward.

Claim 2.8.

Xa ⊂ U0 ∪ U1 ∪ · · · ∪ Ur

We prove the claim. Since Xa is the closed subscheme of XK defined by the equations χe
⋆
i −χe

⋆
0 = ai

(i = 1, . . . , r), it follows from the assumptions on the ai that on Xa no pair of the χe
⋆
0 , χe

⋆
1 , . . . , χe

⋆
r

have a common zero. This implies that, as was to be shown:

Xa ⊂
⋂

0≤i<j≤r

(
{χe

⋆
i 6= 0} ∪ {χe

⋆
j 6= 0}

)
=

r⋃

i=0

⋂

j 6=i

{χe
⋆
j 6= 0}

=

r⋃

i=0

{χui 6= 0} = U0 ∪ U1 ∪ · · · ∪ Ur

Claim 2.9. For all j = 0, . . . , r, Xa ∩ Uj ∼= Wj where Wj ⊂ Vj is the Zariski open neighbourhood of
the toric boundary given by the conditions

χe
⋆
j − aj 6= 0,

χe
⋆
j + ai − aj 6= 0 ∀ i ≥ 1, i 6= j
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We prove the claim. Our assumption on the ai imply that Wj is contains the boundary Bj ⊂ Vj .
The variety Xa ∩ Uj is given in Uj by the equations

χe
⋆
0 = χe

⋆
j − aj ,

χe
⋆
i = χe

⋆
j + ai − aj ∀ i ≥ 1, i 6= j.

The statement follows by solving for χe
⋆
0 and the χe

⋆
i (i ≥ 1, i 6= j) in terms of χe

⋆
j .

We finish with the proof of the proposition. From the equations of Xa∩U0 in U0 we see that Xa∩U0

is isomorphic to an open subscheme of A1
K×K SpecK[M ] and hence it is smooth. If 0 ≤ i < j ≤ r, then

Xa ∩Ui ∩Uj is smooth, as Ui ∩Uj is the big torus of X̃K : this shows the first part of the proposition.

Finally, it is obvious that Da
∼= SpecK[M ], therefore it is smooth. �

Remark 2.10. It might be possible to give a proof of Proposition 2.5 by using the theory of T-varieties
[31, 7, 6].

2.3. Simultaneous resolutions of the local Altmann deformation.

Proposition 2.11. Let N be a 2-dimensional lattice, F = F1 + · · ·+ Fr ⊂ N a polygon endowed with
an admissible Minkowski decomposition, σ = 〈F × {1}〉+ ⊂ N = N ⊕ Z, (XF , DF ) the corresponding
3-dimensional affine toric pair, and f : (X ,D) → Ar the local Altmann deformation. Fix a dual tropical
arrangement and let π : (Y,E) → (X,D) be the induced partial resolution.

There exists a commutative diagram

(Y,E)

��

π

$$■
■■

■■
■■

■■

�

� // (Y, E)

g

��

Π

$$■
■■

■■
■■

■■

(X,D)

zz✉✉
✉✉
✉✉
✉✉
✉

�

� // (X ,D)

f
zz✉✉
✉✉
✉✉
✉✉
✉

{0} �
� // Ar

where all squares are Cartesian and:

(i) The morphism Π: Y → X is toric, birational, projective, and crepant;
(ii) The toric variety Y is Gorenstein, Q-factorial, and terminal;
(iii) The morphisms g = f ◦Π: Y → Ar and its restriction E = Π−1(D) → Ar are flat;
(iv) Let C ⊂ K be a field extension, a : C[t1, . . . , tr] → K a C-algebra homomorphism such that the

aj = a(tj) ∈ K are pairwise distinct and non-zero, and consider the base change:

(Ya, Ea)

��

πa

%%▲▲
▲▲

▲▲
▲▲

▲▲

�

� // (Y, E)

g

��

Π

$$■
■■

■■
■■

■■

(Xa, Da)

xxrrr
rr
rr
rr
r

�

� // (X ,D)

f
zz✉✉
✉✉
✉✉
✉✉
✉

SpecK �

� // Ar

The singular locus of Xa is a disjoint union of curves with transverse type A singularities and
πa : Ya → Xa is the minimal resolution.

Proof. By construction, X is the toric variety corresponding to the cone

σ̃ = 〈e0, F1 + e1, . . . , Fr + er〉+ ⊂ Ñ = N ⊕ Ze0 ⊕ · · · ⊕ Zer

This is the cone over the (r + 2)-dimensional polytope

F̃ = [e0, F1 + e1, . . . , Fr + er]
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which is none other than the Cayley polytope — see Definition A.2 — of the Minkowski decomposition.
According to Theorem A.6, the tropical arrangement determines a coherent fine mixed subdivision of

F induced by a regular triangulation of F̃ .
This regular triangulation induces a subdivision of σ̃. The cones of this subdivision are the elements

of a fan Σ in Ñ and we denote by Y = YΣ the corresponding toric variety and by Π: Y → X the

induced partial resolution. Because the subdivision arises from a triangulation of F̃ , this morphism is
crepant.

Because Π is crepant and comes from a triangulation, the variety Y is Gorenstein and Q-factorial.

By construction, every lattice point of F̃ is the primitive generator of some ray of the fan defining Y,
hence Y has terminal singularities.

The key point is to show that the morphisms g = f◦Π: Y → Ar and its restriction E = Π−1(D) → Ar

are flat, and this is what we do next.
Exactly as in the proof of Proposition 2.2, it is enough to show that

(2.1) χe
⋆
1 − χe

⋆
0 , · · · , χe

⋆
r − χe

⋆
0 , χe

⋆
0

is a regular sequence in OY . We prove this by showing that (2.1) is a regular sequence in every Zariski
open toric subset of Y. For this purpose, pick a maximal — that is, (r + 3)-dimensional — cone λ of
the subdivision and denote by

Yλ ⊂ Y

the corresponding Zariski open toric subset. We need to show that (2.1) is a regular sequence in OYλ
.

The cone λ is generated by vectors v1, . . . , vr+3 ∈ Ñ such that for all k ∈ {1, . . . , r + 3}, there is a
unique i ∈ {1, . . . , r} such that vk ∈ ei+Fi. For all k ∈ {1, . . . , r+3}, denote by xk the Cox coordinate
corresponding to the generator vk. Then in Cox coordinates we have, for all i = 0, . . . , r

χe
⋆
i =

∏

k : vk∈ei+Fi

xk

We see that for all 0 ≤ i, j ≤ r, i 6= j, the two functions χe
⋆
i , χe

⋆
j are expressions in two disjoint sets of

Cox coordinates, namely the set of xk such that vk ∈ ei + Fi and the set of xk such that vk ∈ ej + Fj .
It follows from [44, Lemma 4.3] that (2.1) is a regular sequence in the Cox ring of Yλ. As the elements
in (2.1) belong to OYλ

, which is the degree zero part of the Cl(Yλ)-grading on the Cox ring of Yλ, it
follows that (2.1) is a regular sequence in OYλ

.

The statement concerning the singular set of Xa in Part (iv) follows immediately from Proposi-
tion 2.5, Part (1). Because Y has terminal singularities, and terminal singularities are nonsingular in
codimension two, the morphism Π: Y → X is a crepant resolution of the singular strata of X that
cause, according to Part (1) of Proposition 2.5, the singularities of Xa, and hence πa : Ya → Xa is the
minimal resolution. �

2.4. The global Altmann deformation.

Proposition 2.12. Let N be a 3-dimensional lattice, P ⊂ N a reflexive polytope, and F ≤ P a facet
of P endowed with a Minkowski decomposition

(2.2) F = F1 + · · ·+ Fr

Let (XP , DP ) be the corresponding Fano toric pair, and denote by (XF , DF ) ⊆ (XP , DP ) the Zariski
open affine toric pair corresponding to F .

There exists a deformation

(XP , DP )
�

� //

��

(X ,D)

f

��
{0} �

� // Ar

of the pair (XP , DP ) that induces the local Altmann deformation of the pair (XF , DF ).
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Definition 2.13. The diagram of Proposition 2.12 is the global Altmann deformation of the pair
(XP , DP ) associated with the given Minkowski decomposition of the facet F ≤ P .

Proof of Proposition 2.12. The proof is a straightforward application of the general construction given
in [44, Theorem 6.1].

Denote by v ∈ Q = P ⋆ ⊂M the vertex of the polar polytope corresponding to F ; then tautologically
F ⊂ {v = −1}. We choose the following data to interpret Equation 2.2:

(1) Lattice polygons Fi ⊂ {v = 0};
(2) A lattice vector f0 ∈ {v = −1} — for example we can choose f0 to be a vertex of F — such

that

F = {f0}+ F1 + · · ·+ Fr

holds in N . We write F0 = {f0} ⊂ N , a 0-dimensional polytope.

We have that (F, F0, F1, . . . , Fr, v) is a ∂-deformation datum, in the language of [44, Definition 3.1],
for (N, σF ), where σF is the cone over F . It is a simple exercise to show that the construction of [44,
Theorem 4.1] applied to (N, σF ) starting from this ∂-deformation datum produces the local Altmann
deformation of (XF , DF ).

Now consider the 4-dimensional lattice N† = N ⊕ Ze† and the cone σ† = 〈P × {e†}〉+ ⊂ N†.
This is the cone corresponding to the polarised projective toric pair (XP , DP ) in the language of [44,
Lemma 2.3], and (F+e†, F0+e†, F1, . . . , Fr, v) is a ∂-deformation datum for (N†, σ†).

‡ The construction
of [44, Theorem 6.1] applied to (N†, σ†) starting from this ∂-deformation datum produces a global
deformation of the Fano toric pair (XP , DP ) over A

r.

To finish the proof we verify that the restriction of this global deformation to (XF , DF ) is the local
Altmann deformation. This, in fact, is a straightforward exercise in unpacking the construction of the
deformation associated to a ∂-deformation datum described in the statement of [44, Theorem 3.5]. We
sketch the verification leaving some of the details to the reader.

The global deformation is constructed as follows. Consider the lattices:

Ñ = N ⊕ Ze1 ⊕ · · · ⊕ Zer, and Ñ† = N† ⊕ Ze1 ⊕ · · · ⊕ Zer

and the cone:

C =
〈
σ†, {f0 + e†} − e1 − · · · − er, F1 + e1, . . . , Fr + er

〉
+
⊂ Ñ†

The element e† ∈ intC defines a Z-grading on the ring C[C∨∩M̃†] and hence a projective toric variety:

X̃ = ProjC[C∨ ∩ M̃†]

We now describe the total space of the global deformation as a subvariety of X̃×Ar defined by explicit

equations in Cox coordinates. First note that X̃ is the toric variety of the fan Σ̃ ⊂ Ñ whose cones are
the images of the proper faces of C under the obvious projection

Ñ† → Ñ = Ñ†/Ze†

Let us denote by Σ̃(1) the set of primitive generators of the rays of Σ̃. The Cox coordinates of X̃

are indexed by the elements ρ ∈ Σ̃(1) and we denote by xρ the corresponding coordinate, and by tj ,
j = 1, . . . , r the standard coordinate functions on Ar. The total space of the global deformation is the

subvariety X ⊂ X̃×Ar defined by the homogeneous ideal generated by the following trinomials in Cox
coordinates:

(2.3)
∏

〈e⋆
j
,ρ〉>0

x
〈e⋆j ,ρ〉
ρ −

∏

〈e⋆
j
,ρ〉<0

x
−〈e⋆j ,ρ〉
ρ − tj

∏

ρ

x〈v,ρ〉ρ

∏

〈e⋆
j
,ρ〉<0

x
−〈e⋆j ,ρ〉
ρ

‡The direct sum decomposition N† = N ⊕Ze† induces a dual direct sum decomposition M† = M ⊕Ze⋆
†

(the notation

is self-explanatory) by which we think of v ∈ M as of an element of M† such that 〈v, e†〉 = 0.
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for j = 1, . . . , r. We need to compare these equations with the equations that define the local Altmann

deformation. Now, on the face of it, we don’t understand all the cones of Σ̃. But we do know one
maximal cone, namely the cone:

σ̃ =
〈
{f0} − e1 − · · · − er, F1 + e1, . . . , Fr + er

〉
+
⊂ Ñ

that is used in the construction of the local Altmann deformation. Indeed denote by

X̃F = SpecC[σ̃∨ ∩ M̃ ] ⊂ X̃

the corresponding affine open subset. It is immediate to check that the restriction of Equations (2.2)

to X̃F (for all ρ ∈ Σ̃, if ρ 6∈ σ̃ set xρ = 1) give the equations of the local Altmann deformation in

X̃F × Ar. �

2.5. Simultaneous resolution of the global Altmann deformation. The proof of the following
Proposition will be given in § 4.2.

Proposition 2.14. Let N be a 3-dimensional lattice, P ⊂ N a reflexive polytope, and (XP , DP ) be
the corresponding Fano toric pair.

Let F ≤ P be a facet endowed with a Minkowski decomposition

F = F1 + · · ·+ Fr

Denote by San the analytic germ of 0 ∈ Ar and by

(XP , DP )
�

� //

��

(X an,Dan)

fan

��
{0}

�

� // San

the analytification of the global Altmann deformation constructed in Proposition 2.12.
Assume that P is endowed with amd and let π : (Y,E) → (XP , DP ) be the induced partial resolution.

There exists a diagram of complex analytic deformations:

(Y,E)

��

π

%%❏
❏❏

❏❏
❏❏

❏❏
❏

�

� //
(
Yan, Ean

)

gan

��

Πan

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

(XP , DP )

yyss
ss
ss
ss
ss

�

� //
(
X an,Dan

)

fan

ww♣♣♣
♣♣
♣♣
♣♣
♣♣
♣

{0}
�

� // San

Remark 2.15. (1) We prove the result in § 4.2 using deformation theory. An algebraic version of the
statement probably holds, and it may be be possible to prove it by the methods of the proof of
Proposition 2.12.

(2) In the statement it is enough to choose, for all facets of P , an admissible Minkowski decomposition
and a dual tropical arrangement. It is not necessary to assume the compatibility condition along
dull edges. We will not need this more general statement.

2.6. Some results on infinitesimal deformations. We collect some facts about infinitesimal de-
formations of the pair (X,D) that we will need in § 4.2 when we prove Proposition 2.14. The reader
can skip this material and return to it when it is needed.

Notation 2.16. If T is a representation of T = SpecC[M ] and v ∈ M , we denote by T(v) ⊂ T the
invariant summand on which T acts with character v.

We also denote by C(v) the one-dimensional representation of T on which T acts with character v.
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IfX is a scheme over a field k, we denote byT1
X the tangent space of the deformation functor Def(X);

ifD ⊂ X is an effective Cartier divisor, we denote byT1
X,D the tangent space of the deformation functor

Def(X,D) of the pair (X,D). See Appendix B for a discussion of these matters.

Lemma 2.17. Let (X,D) be a 3-dimensional Gorenstein Fano toric pair. Denote by Q ⊂ M be the
moment polyhedron of D.

There is an exact sequence:

H0(X,TX) → H0 (D,NDX) → T1
X,D → T1

X → H1 (D,NDX)

where:

(1) H1 (D,NDX) = (0);
(2) Denote by Q1 the union of the edges of Q, including the vertices.

Write C = coker
[
H0(X,TX) → H0 (D,NDX)

]
, then: C =

⊕

v∈Q1∩M

C(v)

as a representation of T;
(3) For all v ∈ Q1 ∩M , T1

X(v) = (0) and hence T1
X,D(v) = C(v).

Remark 2.18. (1) The statement applies both to the case X compact and X affine. If X is compact,
then X corresponds to a reflexive polytope P ⊂ N and Q = P ⋆ is the polar polytope. If X is affine
then X = Xσ for some Gorenstein cone σ ⊂ N ; there is a vector u ∈ σ∨ such that div(χu) = D
and Q = −u+ σ∨.

(2) The proof follows easily from the difficult explicit description of T1
Xσ

, for σ ⊂ N a 3-dimensional
Gorenstein cone, given in Altmann’s paper [4, § 4.3].

Proof. By Lemma B.13 we have an exact sequence:

(0) → ΩX → ΩX(logD) → OD → (0)

and by Proposition B.14 T1
X,D = Ext1

(
ΩX(logD),OX

)
. Taking the long exact sequence of Ext we get

(0) → H0
(
X,TX(− logD)

)
→ H0(X,TX) → Ext1 (OD,OX) → T1

X,D → T1
X → Ext2 (OD,OX)

but then Ext1 (OD,OX) = H0
(
X, Ext1(OD,OX)

)
and Ext1 (OD,OX) = OD(D) = NDX . Similarly,

Ext2 (OD,OX) = H1
(
Ext1(OD,OX)

)
= H1 (D,NDX). Note Ext2(OD,OX) = 0 since D is Cartier.

This establishes the exact sequence.

From the exact sequence (0) → OX → OX(D) → NDX → (0) we get an exact sequence

H1 (X,OX(D)) → H1(D,NDX) → H2(X,OX)

where the groups on the left and right are (0) by Kawamata Viehweg vanishing (using D = −KX

ample) and hence the group in the middle also is (0).

To prove Part (2), consider first a toric cone σ = 〈ρ1, . . . ρr〉+ ⊂ N , and let Rσ = k[σ∨ ∩M ]. We
work with the affine case X = SpecRσ. It is stated for example in [50, Theorem 3.2] that

(2.4) Derk(Rσ, Rσ) =
(
N ⊗Rσ

)
⊕ k[P1]D1 ⊕ · · · ⊕ k[Pr]Dr

where:

(i) For all v ∈ N Dv : Rσ → Rσ is the derivation defined by Dv(x
m) = 〈v,m〉xm;

(ii) The morphism N ⊗Rσ → Derk(Rσ, Rσ) takes v ⊗ f to fDv;
(iii) For all j = 1, . . . , r,

Pj =
{
m ∈M | 〈ρj ,m〉 = −1 and ∀i 6= j 〈ρi,m〉 ≥ 0

}

k[Pj ] is a Rσ-module in the obvious way, and Dj = Dρj .
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In Equation (2.4), the summand N ⊗Rσ corresponds to the log derivations TX(− logD) = N ⊗OX .
Part (2) follows immediately in the affine case. Part (2) in the general case is proved by considering
the toric affine cover.

Part (3) in the affine case is an immediate consequence of the explicit description of T1
Xσ

, for σ ⊂ N
a 3-dimensional Gorenstein cone, given in the Theorem in [4, § 4.3]. Part (3) in the general case is
proved by considering the toric affine cover. �

Lemma 2.19. Let P ⊂ N be a reflexive polytope, and (X,D) the corresponding toric pair. Denote by
Q ⊂M be the polar polytope.

Denote by Σ the spanning fan of P , and by Σ′ the set of its maximal cones. For all σ ∈ Σ′, denote
by (Xσ, Dσ) the corresponding affine toric pair.

(1) The natural homomorphism

(2.5) T1
X,D = H0(X, T 1

X,D) →
⊕

σ∈Σ′

T1
Xσ ,Dσ

is injective.
(2) Let v ∈ Q be a vertex. Denote by σv ⊂ Σ′ the cone corresponding to v. Equation 2.5 induces

an isomorphism:

T1
X,D(v)

∼= T1
Xσv ,Dσv

(v)

Proof. We use freely the content of Appendix B, especially Proposition B.14. Computing T1
X,D =

Ext1OX
(ΩX(logD),OX) with the local-to-global spectral sequence for Ext we get an exact sequence:

H1 (X,TX(− logD)) → T1
X,D → H0(X, T 1

X,D) → H2 (X,TX(− logD))

But now by Remark B.16 TX(− logD) = N ⊗OX
∼= O3

X and hence we get (1).
Part (2) follows from Lemma 2.17. �

3. Infinitesimal deformations of (Y,E)

3.1. Notation. We summarize the notation that will be in force throughout Sections 3–7. From this
point on in the paper, the reader should come back to this section when in doubt about notation.
Most of this notation is illustrated and summarised in Fig. 7. The figure depicts a pair (Y,E) above
an affine neighbourhood (X,D) of a closed point x ∈ X in the 0-stratum. The blue surfaces are the
strict transforms of the components of D ⊂ X ; the green surfaces dominate a 1-stratum x ∈ Γ ⊂ X ;
the pink surfaces are contracted to the closed point x ∈ X . We invite the reader to contemplate the
picture before reading the following text.

Fix a 3-dimensional reflexive polytope P endowed with amd, and denote by (X,D) = (XP , DP ) the
corresponding Fano toric pair and by π : (Y,E) → (X,D) the induced partial resolution.

By Lemma 1.14, the pair (Y,E) has qODP singularities, that is, it is simple normal crossing outside
a finite set of quasi-ordinary double points x ∈ E ⊂ X , étale-locally isomorphic to

0 ∈ (x1x2 = 0) ⊂ (x1x2 − x3x4 = 0) /µa

We denote by ∆ ⊂ E the singular locus of E. At a qODP point, ∆ is the union of the 4 coordinate
axes, as pictured on the right in Fig. 8. We denote by ν : ∆′ → ∆ the partial normalization of ∆ that
is an isomorphism outside the qODPs, and that at the qODPs is as pictured in Fig. 8.

We denote by Q = P ⋆ ⊂M the polar polytope of P : Q is the moment polytope of X .

For all vertices v ≤ Q, we denote by F v ≤ P the corresponding facet of P , and by r(v) the number
of Minkowski factors of F v. We choose a labeling of those factors and write:

F v =

r(v)∑

i=1

F vi

We denote by xv ∈ X the 0-stratum corresponding to v.
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Ee3

Ee2

Ee1
∆e

1

∆e
2

∆e
3

∆e
4

Ce3

Figure 7. Exceptional surfaces over transverse A3.

x4

x3

x1

x2

∐ ν
−−−−−→

x1

x2

x4

x3

Figure 8. The partial normalization ν : ∆′ → ∆.

For all edges e ≤ P , we denote by ℓe the (lattice) length of e, by e⋆ = [v, w] ≤ Q the dual edge, and
by ke the colength of e, that is, the length of e⋆.

We denote by Γe ⊂ X the closure of the 1-dimensional torus orbit corresponding to e. Note that X
has transverse Aℓe−1 singularities generically along Γe, and that −KX · Γe = ke.

The set Le of unit lattice segments of e is in bijective correspondence with the 1-dimensional torus
orbits of Y that dominate Γe. We choose an orientation of e identifying Le with the set [ℓe] =
{1, 2, . . . , ℓe} and hence denote by

∆e
1, . . . ,∆

e
ℓe

the closures of the 1-dimensional torus orbits of Y that dominate Γe. We label the exceptional divisors
of π : Y → X that dominate Γe in such a way that

∆e
1 ⊂ Ee1 ; ∀ 2 ≤ j ≤ ℓe − 1, ∆e

j = Eej−1 ∩E
e
j ; ∆e

ℓe ⊂ Eeℓe−1

In this setting, we denote by Cej ⊂ Eej a general fibre of π : Eej → Γe. These labelling and numbering
conventions are illustrated in Fig. 7.
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For all edges e ≤ P and dual edge e⋆ = [v, w] ≤ Q and all 1 ≤ j ≤ ℓe, the polarized curve(
∆e
j ,−KY |∆e

j

)
is canonically isomorphic to

(
P1,O(ke)

)
and we denote by [zv : zw] the homogeneous

coordinates such that xv = [1 : 0], xw = [0 : 1].

Let e ⊂ P be an edge and e⋆ = [v, w] the dual edge. The set Le is endowed with a partition whose
parts correspond to Minkowski factors F vi . We denote by

Lvi ⊂ Le the part corresponding to F vi

Note that the F vi are in bijective correspondence with the connected components of (π ◦ ν)−1(xv).

The notation is summarized in Fig. 7, which shows a typical configuration above a vertex-edge flag
v ∈ e⋆ ⊂ Q where Fv has two Minkowski factors, with tropical curves pictures in blue and red, and
ℓe = 4. In the figure, Le = {1, 2, 3, 4} and the partition is

{
{1, 3}, {2, 4}

}
. The exceptional divisors of

π : Y → X that map to xv are shaded in pink; those that dominate Γe are shaded in green; and the
strict transform of boundary divisors in X are shaded in blue.

3.2. Statement of purpose. By Lemma 1.14, the pair (Y,E) has qODP singularities.
In Appendix B we develop a general theory of deformations and obstructions of pairs of a variety

or stack and effective Cartier divisor, and specialize the general theory to the case of qODP pairs and
qODP stack pairs. In particular, we construct an obstruction theory for deformations of qODP pairs
and qODP stack pairs.

In this section we prove some facts about deformations of the qODP stack pair (Y,E). In particular
we compute the tangent space T1

Y,E to the deformation functor as a representation of the torus, and

we show that T2
Y,E = (0).

3.3. Deformation theory of qODP stack pairs.

Lemma 3.1. Let Y be a qODP stack and let Sing Y be the singular locus of Y equipped with the
reduced structure. Then Ext1(ΩY ,OY ) = OSingY and Ext2(ΩY ,OY ) = (0). �

Lemma 3.2. Let (Y,E) be a qODP stack pair and let ΩY (logE) be the coherent sheaf of Defini-
tion B.10. Let ∆ = SingE and let ν : ∆′ → ∆ be the partial normalisation of Notation 3.1. Then:

T i
Y,E = ExtiOY

(ΩY (logE),OY ) =





TY (− logE) if i = 0,

ν⋆ν
⋆(O∆(E)) if i = 1,

(0) if i = 2.

Remark 3.3. The sheaf T 1
Y,E is the sheaf LSE of log structures on E as defined in [25, Definition 3.19];

see also [15].

Proof of Lemma 3.2. The case i = 0 is obtained in Remark B.17. By Remark B.17 we have T 2
Y,E ≃ T 2

Y .

Therefore the case i = 2 follows from Lemma 3.1. The case i = 1 follows from Proposition B.18(2)
and Example B.22 (working intrinsically, cf. [19]).

�

Lemma 3.4. If (Y,E) is a proper toric qODP stack pair, then

Ti
Y,E = ExtiOY

(ΩY (logE),OY ) =





C⊗N if i = 0,

H0
(
Y, T 1

Y,E

)
= H0 (∆′, ν⋆ (−KY )) if i = 1,

H1
(
Y, T 1

Y,E

)
= H1 (∆′, ν⋆ (−KY )) if i = 2.

Proof. We consider the spectral sequence

Ep,q2 = Hp(Y, T q
Y,E) ⇒ Extp+q(ΩY (logE),OY ) = T

p+q
Y,E .

Recalling that OY does not have higher cohomology, we easily conclude by Lemma 3.2 and Re-
mark B.16. �
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3.4. Explicit computation of T1
Y,E. We build an explicit basis of T1

Y,E = H0
(
Y, T 1

Y,E

)
as a repre-

sentation of the torus T = SpecC[M ] and we show that T2
Y,E = (0). As a corollary we get the first

part of Theorem 1.17, stating that Y is smoothable.

Lemma 3.5. Let P ⊂ N be a reflexive polytope endowed with choices, for all facets, of admissible
Minkowski decompositions and dual tropical arrangements.

Let (X,D) be the corresponding Fano toric pair and let π : (Y,E) → (X,D) the induced partial
resolution.

Assume the notation set out in § 3.1.
The following sections svi and sej,m give a basis of T1

Y,E = H0
(
Y, T 1

Y,E

)
:

• For all vertices v of Q, and for every Minkowski factor F vi , s = svi is the unique section such
that:
(a) s takes constant value 1 on the connected component of (νπ)−1 (xv) corresponding to F vi ;

and s takes value 0 everywhere else on (νπ)−1 (xv);
(b) If e ⊂ F v is an edge: if j ∈ Lvi then s|∆e

j
= zkev ; if j 6∈ Lvi then s|∆e

j
= 0;

(c) If e is an edge of P that is not an edge of F v, then for all j ∈ Le s|∆e
j
= 0.

• For all edges e ≤ P such that ke ≥ 2, j = 1, . . . , ℓe, 1 ≤ m ≤ ke − 1, and dual edge e⋆ = [v, w],
s = sej,m is the unique section such that: s|∆e

j
= zmv z

ke−m
w , and s = 0 everywhere else.

If T is a representation of T, and m ∈ M , denote by T(m) the invariant summand on which T

acts with character m. Denote by Q1 the union of the edges of Q, including the vertices. The set of
m ∈M such that T1

Y,E(m) 6= (0) is Q1 ∩M . More precisely,

svi ∈ T1
Y,E(v) and sej,m ∈ T1

Y,E(v +m(w − v))

thus dimT1
Y,E(v) = r(v) (the number of Minkowski summands of Fv) and dimT1

Y,E(m) = ℓe.

Proof. Straightforward combinatorics. �

Corollary 3.6. Assume that the matching condition holds. Consider an edge e⋆ ≤ Q with ℓe > 1.
There is a section s ∈ T1

Y,E such that s|∆e
j1

6= s|∆e
j2

for j1 6= j2 .

Proof. If ke > 1 then the statement is easy. Assume that ke = 1, and let v and w be the vertices of
e⋆. We argue that for general λh, µi ∈ C

s =
∑

λhs
v
h +

∑
µis

w
i

has the wished-for property. Indeed, assume for a contradiction that there exist j1 6= j2 such that
s|∆e

j1
= s|∆e

j2
. There are h1, i1 such that j1 ∈ Lvh1

∩ Lwi1 and, similarly, there are h2, i2 such that

j2 ∈ Lvh2
∩Lwi2 . By assumption λh1

= λh2
and µi1 = µi2 . Since these constant are generic, this implies

further that Lvh1
= Lvh2

and Lwi1 = Lwi2 . The matching condition states that for all h, i |Lwh ∩ Lvi | ≤ 1
and it implies that j1 = j2. �

Theorem 3.7. Let P ⊂ N be a reflexive polytope endowed with amd, (X,D) the corresponding Fano
toric pair, and π : (Y,E) → (X,D) the induced partial resolution.

Regard the pair (Y,E) as a qODP stack pair in the obvious way. Then

(1) The sheaf T 1
Y,E is generated by global sections and H1

(
Y, T 1

Y,E

)
= (0);

(2) For i > 0 Hi (Y, TY (− logE)) = (0);
(3) T2

Y,E = (0); that is, the pair (Y,E) is unobstructed and hence smoothable.

Proof. For Part (1) consider the partial normalization µ : ∆̃ → ∆′ that pries out all of the ∆e
j from

the body of ∆′; then we have an exact sequence

(0) → O∆′(−KY ) → µ⋆µ
⋆O∆′(−KY ) → δ → (0)

and one sees right away that the homomorphism

H0
(
∆′, µ⋆µ

⋆O∆′(−KY )
)
→ δ
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is surjective. It is also clear that H1
(
∆̃, µ⋆O∆′(−KY )

)
= (0).

For the rest of the proof we use freely the content of Appendix B.
Part (2) is an immediate consequence of Remark B.16 stating that TY (− logE) = N ⊗Z OY

∼= O3
Y .

We now prove Part (3). By Lemma 3.2

T 1
Y,E = Ext1OY

(ΩY (logE),OY )

and T2
Y,E = Ext2OY

(ΩY (logE),OY ). Computing this group with the local-to-global spectral sequence
for Ext we get an exact sequence:

H2 (Y, TY (− logE)) → T2
Y,E → H1

(
Y, T 1

Y,E

)

Now conclude with the vanishing proved in Parts (1) and (2). �

3.5. Blowing down deformations.

Lemma 3.8. Let P ⊂ N be a 3-dimensional reflexive polyhedron endowed with choices, for all facets,
of admissible Minkowski decompositions and dual tropical arrangements. Let (X,D) the corresponding
Fano toric pair and π : (Y,E) → (X,D) the induced partial resolution.

Let g : (Y, E) → S be a deformation of the pair (Y,E) (either algebraic or complex analytic); then

(1) For all n ≥ 0 and all i ≥ 1 Rig⋆OY(−nKY) = (0). For all n ≥ 0, g⋆OY(−nKY) is a vector bundle.
(2) There is a diagram of deformations:

(Y,E)

��

π

##❍
❍❍

❍❍
❍❍

❍❍

�

� //
(
Y, E

)

g

��

Π

$$❍
❍❍

❍❍
❍❍

❍❍

(X,D)

zz✈✈
✈✈
✈✈
✈✈
✈

�

� //
(
X ,D

)

f
zz✉✉
✉✉
✉✉
✉✉
✉✉

{0}
�

� // S

where

X = Proj⊕n≥0g⋆OY(−nKY)

(3) Every fibre of f is a Fano 3-fold with Gorenstein canonical singularities.

Proof. The birational morphism π is crepant and toric so Riπ∗OY (−nKY ) = Riπ∗OY = 0 for i > 0
since toric varieties have rational singularities, see e.g. [21], p. 76. Then also Hi(Y,−nKY ) = (0) for
i > 0 by Leray and Kawamata–Viehweg vanishing for X . Part (1) then follows from cohomology and
base change.

Part (2) now follows from the fact that X = Proj⊕n≥0H
0(Y,−nKY ), see also [55, Theorem 1.4].

Next we show Part (3). First, it follows from Part (2) that, for all t ∈ S, the fibre Xt is Gorenstein
and the contraction morphism πt : Yt → Xt is crepant. For all t, the fibre Yt has qODP, hence terminal
singularities, and hence Xt has at worst canonical singularities. �

Definition 3.9. The deformation f : (X ,D) → S constructed in Lemma 3.8 is the blow-down of the
deformation g : (Y, E) → S.

4. Homogeneous deformations II

4.1. Statement of purpose. The purpose of this section is to prove Proposition 2.14. The statement
is natural and unsurprising: if you are willing to take it on trust, we suggest that you jump to Section 5
and see how it is used to complete the proof of Theorem 1.17.

Our proof uses abstract deformation theory. Specifically, we need: (a) the theorem of Kuranishi–
Douady–Grauert [36, 17, 24] on the existence of the complex analytic versal deformation of a compact
complex analytic space, and (b) the work of Rim [49] on G-equivariant structures on formal versal
families, which for convenience we recall in Appendix D.
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4.2. Proof of Proposition 2.14.

Setup 4.1. This setup will be in force throughout this section. Let f̃an : (X̃ an, D̃an) → Man
X,D be a

miniversal complex analytic deformation of the pair (X,D).
Let fan : (X an,Dan) → Man

Y,E be the blow-down deformation.
Choose a complex analytic morphism Π⋆ : M

an
Y,E → Man

X,D and a fibre square:

(4.1) (X an,Dan) //

fan

��

(X̃ an, D̃an)

f̃an

��
Man

Y,E Π⋆

// Man
X,D

(The fibre square exists by the versal property of f̃an.)

Let fan
v : (X an

v ,Dan
v ) → San

v be the analytification of the global Altmann family. Choose a complex
analytic morphism j : San

v → Man
X,D and a fibre square

(4.2)
(
X an
v ,Dan

v

)

fan
v

��

// (X̃ an, D̃an)

f̃an

��
San
v j

// Man
X,D

(The existence of such a fibre square follows from the versal property of f̃an : (X̃an, D̃an) → Man
X,D.)

In the course of the proof, we identify the vertex v ∈ M with the corresponding character of the
torus and denote by T1

Y,E(v) the invariant summand on which T acts with character v.

Lemma 4.2. Consider the diagram of morphisms and their derivatives, also known as Kodaira–
Spencer maps

Man

Y,E

Π⋆

��
San

v j
// Man

X,D

T1
Y,E

DΠ⋆=κ

��
Cr = T0Sv

Dj=κ†

// T1
X,D

Then κ† is injective, κ is injective on T1
Y,E(v), and Dj(C

r) = DΠ⋆(T
1
Y,E(v)).

Proof. By construction, the global Altmann deformation is T-equivariant and the tangent space T0Sv =
Cr is v-isotypic. Both κ and κ† are T-equivariant and it follows that both images are contained in the
direct summand T1

X,D(v) ⊂ T1
X,D.

Denote by Σ the spanning fan of P , and by Σ′ the set of its maximal cones. Among these cones,
there is the cone σv corresponding to v. For all σ ∈ Σ′, denote by (Xσ, Dσ) the corresponding affine
toric pair. Also write Yσ = π−1(Xσ), Eσ = π−1(Dσ).

Lemma 2.19 states that the localization map

T1
X,D(v) → T1

Xσv ,Dσv
(v)

is an isomorphism (we only need that it is injective). We prove the result by composing with the
localization map and studying images in T1

Xσv ,Dσv
.
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It follows from the explicit description of Lemma 3.5 that T1
Y,E(v) = T1

Yσv ,Eσv
(v). Also, we have a

commutative diagram where the notation is self-explanatory:

(4.3) T1
Y,E(v)

κ

��

T1
Yσv ,Eσv

(v)

κv

��
T1
X,D(v) // T1

Xσv ,Dσv
(v)

Denoting by fσv
: (Xσv

,Dσv
) → Sv the local Altmann deformation, and by κ†v : T0Sv → T1

Xσv ,Dσv

its Kodaira–Spencer map, we also have a commutative diagram:

(4.4) T0Sv

κ†

��

κ†
v

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

T1
X,D(v) // T1

Xσv ,Dσv
(v)

The two commutative diagrams 4.3 and 4.4, together with Lemma 2.19 show that the statement that
we have to prove follows from its local version: namely, the statement that the two maps:

κv : T1
Yσv ,Eσv

(v) → T1
Xσv ,Dσv

(v) and κ†v : T0Sv → T1
Xσv ,Dσv

(v)

have the same image. To prove this local statement, consider the simultaneous partial resolution

gσv
: (Yσv

, Eσv
) → Sv

of the local Altmann deformation provided by Proposition 2.11, and denote by λ†v : T0Sv → T1
Yσv ,Eσv

(v)
its Kodaira–Spencer map. Everything follows from the following two simple facts:

(a) λ†v is an isomorphism;
(b) The partial resolution of the local Altmann deformation induces a factorization of Kodaira–Spencer

maps

T0Sv
λ†
v //

κ†
v %%❑

❑❑
❑❑

❑❑
❑❑

❑
T1
Yσv ,Eσv

(v)

κv

��
T1
Xσv ,Dσv

(v)

�

Lemma 4.3. (1) Theorem D.2 with the setup D = Def(Y,E), T1 = T1
Y,E, T = SpecC[M ] and

T-invariant subspace W = T1(v) ⊂ T1 gives a formal T-equivariant deformation:

(Y,E)

��

�

� // (Ŷv, Êv)

ĝv
��

{0} �
� // T̂

1
(v)

(where we denoted by T̂
1
(v) the formal completion of T1(v) at the origin).
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(2) Consider the T-equivariant blow-down diagram of formal T-equivariant deformations

(Y,E)

��

π

##●
●●

●●
●●

●●
●

�

� //
(
Ŷv, Êv

)

ĝv

��

Π̂v

%%❏
❏❏

❏❏
❏❏

❏❏

(X,D)

{{✇✇
✇✇
✇✇
✇✇
✇✇

�

� //
(
X̂v, D̂v

)

f̂vzztt
tt
tt
tt
t

{0}
�

� // T̂
1
(v)

The formal T-equivariant deformation f̂v :
(
X̂v, D̂v

)
→ T̂

1
(v) is formally isomorphic to the formal

completion of the global Altmann family fv : (Xv,Dv) → Sv = Ar of Proposition 2.12.

Proof. Part (1) is a consequence of the fact that the pair (Y,E) is unobstructed: Theorem D.2 gives a

family over a formal subscheme of T̂
1

Y,E(v) and we are just saying that this subscheme is all of T̂
1

Y,E(v).
Let us prove Part (2). For sake of clarity, let us denote by

(X,D) �
� //

��

(X †
v ,D

†
v)

f†
v

��
{0}

�

� // Sv

the global Altmann family of Proposition 2.12. We want to compare f̂v with f̂ †
v .

Theorem D.2 with the setup D = Def(X,D), T1 = T1
X,D, T = SpecC[M ] and T-invariant subspace

W = κ
(
T1(v)

)
= κ†(Cr) gives a formal T-equivariant deformation:

(X,D)

��

�

� // (X̂W , D̂W )

f̂W
��

{0}
�

� // M̂

where, denoting by Ŵ the formal completion at the origin, M̂ ⊂ Ŵ is a formal subscheme. The

families f̂v and f̂ †
v are both induced by the miniversal family f̂W : it follows from this and Lemma 4.2

that M̂ = Ŵ and that the three families are formally isomorphic. �

Proof of Proposition 2.14.

Claim 4.4. There exists a complex analytic lift j̃ of j as in the diagram:

Man

Y,E

Π⋆

��
San

v j
//

j̃
<<①

①
①

①

Man

X,D

The claim finishes the proof: the pull-back family j̃⋆(Yan, Ean) → San
v is the family that we want.

It remains to prove the claim. By [8, Theorem 1.5(ii)] it is enough to prove that the lift exists
formally. The existence of a formal lift is a more-or-less immediate consequence of Lemma 4.3 and the
fact that Aut(Y,E) = Aut(X,E) = T. For clarity, we spell out the detail. Choose ideals

OSv
⊃ mSv

= J1 ⊃ J2 ⊃ · · ·

such that

(a) for all m ≥ 1 Jm/Jm+1
∼= C;
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(b) for all n > 0 there exists m such that mnSv
⊃ Jm.

For all m ≥ 0, let Smv = Spec(OSv
/Jm) and denote by jm : Smv → Man

X,D, etcetera, the induced
morphism.

For a fixed n ≥ 1, assume by induction that we have constructed a lift to order n

Man
Y,E

Π⋆

��
Snv jn

//

j̃n
<<②

②
②

②

Man
X,D

We construct a lift j̃n+1 : Sn+1
v → Man

Y,E. This finishes the proof, since the base case n = 1 holds by
Lemma 4.2.

For all m ≥ 0, the morphism jm : Smv → Man
X,D induces a deformation of the pair (X,D) that we

denote by

ξm = (jm)⋆(X ,D) ∈ obDef(X,D) (Smv )

The lift j̃n : Snv → Man
Y,E induces a deformation

ηn = (j̃n)⋆(Y, E) ∈ obDef(Y,E) (Snv )

of the pair (Y,E) over Snv . By construction, this deformation blows down to the given deformation ξn

of the pair (X,D), and we write this fact as π⋆η
n = ξn.

By Lemma 4.3 there exists a deformation

ηn+1
♯ ∈ obDef(Y,E)(Sn+1

v )

that extends ηn and blows down to an object isomorphic to ξn+1.
By the versal property of the miniversal family there exists a morphism j̃n+1

♯ : Sn+1
v → Man

Y,E such

that ηn+1
♯ = (j̃n+1

♯ )⋆(Y, E). By construction, Π⋆ ◦ j̃
n+1
♯ ≡ jn+1 (mod n) as morphisms from Sn+1

v to
Man

X,D.

In addition, as we said, (Π⋆ ◦ j̃
n+1
♯ )⋆(X ,D) is isomorphic to ξn+1 = (jn+1)⋆(X ,D).

It follows that there exists a ∈ OS1
v
⊗ aut(X,D) such that

(4.5) jn+1 = a+ (Π⋆ ◦ j̃
n+1
♯ )

as morphisms to Man
X,D. But Aut0(X,D) = Aut0(Y,E), thus regarding a as an element of OS1

v
⊗

aut(Y,E) we have that j̃n+1 = j̃n+1
♯ + a is a lift of jn+1. �

5. Proof of Theorem 1.17

In this section, we prove Theorem 1.17.

Remark 5.1. Theorem 1.17 states that Xt has at worst ordinary double point singularities. In this
section we only show that Xt has at worst isolated cDV singularities; the full statement will be proved
in § 7, see Remark 7.3.

Lemma 5.2. Let N be a 3-dimensional lattice, P ⊂ N a reflexive polytope endowed with amd, (X,D)
be the corresponding Fano toric pair and π : (Y,E) → (X,D) the induced partial resolution.
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Consider a complex analytic miniversal deformation space of the pair (Y,E) and the blow-down
deformation

(Y,E)

��

π

##❍
❍❍

❍❍
❍❍

❍❍

�

� //
(
Yan, Ean

)

gan

��

Πan

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

(X,D)

{{✈✈
✈✈
✈✈
✈✈
✈

�

� //
(
X an,Dan

)

fan

xx♣♣♣
♣♣
♣♣
♣♣
♣♣

{0} �
� // Man

Y,E

For i = 1, 2 consider the subsets:

Zi = {x ∈ X | dim π−1(x) ≥ i} and, for all t ∈ Man

Y,E, Zit = Zi ∩ Xt

Then Zi ⊂ X is a complex analytic subspace and, for t ∈ Man

Y,E general

(1) Z2
t = ∅;

(2) Z1
t is finite.

Proof. First of all, by a theorem of Cartan–Remmert [37, Chap. V, Sec. 3.3, Theorem 5]

W i = {y ∈ Y | dimπ−1π(y) ≥ i}

is a complex analytic subspace. Because π is proper, then by the Remmert proper mapping theorem
Zi = π(W i) ⊂ X is also a complex analytic subspace.

Let us show that for t ∈ Man
Y,E general Z2

t = ∅. First of all, Z2
0 ⊂ X is a finite set contained

in the 0-skeleton of the toric variety X . It follows from this that all of Z2 is contained in a small
analytic neighbourhood of the 0-skeleton of X in X . Let us fix a vertex v ∈ Q and let us focus on
the corresponding closed point xv ∈ X . The complex analytic deformation of Proposition 2.14 is
induced by an inclusion i : San

v → Man
Y,E. By Proposition 2.5, there is a small analytic neighbourhood

xv ∈ U ⊂ X such that for t ∈ San
v general, the singular locus of Ut = Xt∩U consists of a disjoint union∐

Ci of curves and for all i Ut has transverse Ani
-singularities along Ci and therefore Z2 ∩ Ut = ∅

and this must then be true for all t ∈ Man
Y,E general. Since this is true for all v, we conclude that

there is a small analytic neighbourhood V ⊂ X of the 0-skeleton of X such that for t ∈ Man
Y,E general

Z2 ∩ Vt = ∅. Because, as we said, in fact Z2 ⊂ V , we have that for t ∈ Man
Y,E general Z2

t = ∅.

Finally we show that for t ∈ Man
Y,E general Z1

t ⊂ Xt is finite. First of all Z1
0 ⊂ X is contained in

the 1-skeleton. Let us fix an edge e ⊂ Q and let us focus on the corresponding component Γe ⊂ X
of the 1-skeleton. It is enough to show that for x ∈ Γe general, there exists an open neighbourhood
x ∈ U ⊂ X such that for t ∈ Man

Y,E general Ut = Xt ∩ U is smooth. For this purpose consider the
“interior” Gm ⊂ Γe. The space X has transverse Aℓe−1-singularities along this Gm and the germ of X
along this Gm is isomorphic to the germ:

(xy − zℓe = 0) ⊂ A3 ×Gm

and any 1-parameter deformation of X over a small disk D induced by a general deformation of the
pair (Y,E) with Kodaira–Spencer map a general section (Lemma 3.5)

s ∈ T1
Y,E = H0

(
Y, T 1

Y,E

)
= H0

(
∆, ν⋆ν

⋆(−KY )
)

can be written as:

[
xy =

ℓe∏

i=1

(z − tAi(u)) mod t2
]
⊂ A4

x,y,z,u × Dt

where Aj(u) = s|∆e
j
∩π−1(Gm) are Laurent polynomials supported on Γe such that the multiple roots of

the polynomial ∏
(z − tAj(u))
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are all double roots and they occur for distinct values of u. By the Jacobian criterion the total space
is nonsingular at the generic point of Gm and the statement follows. �

Proof of Theorem 1.17. Part (1) is Part (3) of Theorem 3.7, stating that the pair (Y,E), regarded as
a qODP stack, is unobstructed and smoothable.

Lemma 3.8 states that indeed Xt = ProjR(Yt,−KYt
). Lemma 5.2 shows that the exceptional set

of Πt consists of a finite number of curves that are contracted. Because Yt has qODP, and hence
terminal, singularities, and the morphism Πt is crepant and small, it follows that Xt has Gorenstein
terminal and hence, by [48, Theorem (2.2)], isolated cDV singularities. As anticipated this is all that
we show here. The rest of the statement follows from Theorem 7.2, see Remark 7.3. �

6. Local invariance under rearrangement

The content of this section is rather technical. The goal is to prove Theorem 6.1. Before getting
down to business, we discuss informally the statement and its proof.

Statement of purpose. The statement of Theorem 6.1 is very natural. The starting point is a plane
polygon with a given admissible Minkowski decomposition, a dual tropical arrangement subordinated to
the Minkowski decomposition, and the induced partial resolution π : (Y,E) → (X,D). The statement
describes what happens to a deformation Y ⊂ Y → (0 ∈ M) when we change the dual tropical
arrangement. The answer is that, given a second tropical arrangement subordinated to the same
Minkowski decomposition, and corresponding induced partial resolution π′ : (Y ′, E′) → (X,D), there
is a birational transformation

Y
Φ //❴❴❴❴❴❴❴❴❴❴

##●
●●

●●
●●

●●
Y ′

{{✈✈
✈✈
✈✈
✈✈
✈

(0 ∈ M)

— a flop, in fact, although we don’t use the terminology — and Y ′ → (0 ∈ M) is a deformation of Y ′.
Theorem 6.1 is needed in the key step in the proof of our main result Theorem 1.20, where it is

used to modify the total space of a deformation into one where the conclusions are easier to see — all
the action is happening in the proof of Lemma 7.4.

To prove Theorem 6.1, we manoeuvre the first tropical arrangement into the second by a sequence
of elementary moves that we classify into types I–IV (and inverses of moves of type I). In all cases,
the existence of the birational transformation Φ follows easily from the general results of [10], but it is
not immediately clear that Y ′ → (0 ∈ M) is a deformation of Y ′. The natural way to prove the result
is to prove it for the miniversal deformation family of Y and then prove it for all families by pulling
back from the miniversal family. For moves of type II and IV, Y has nonisolated singularities and the
miniversal family is an infinite-dimensional ind-scheme and in that case the miniversal property only
holds formally, see § C.2. This is sufficient to show that Y ′ is a deformation of Y ′ once we know that
Y ′ exists.

Theorem 6.1. Let N be a rank-2 lattice, F ⊂ N a lattice polygon, and m = (F =
∑
Fj) an admissible

Minkowski decomposition.
Let N = N ⊕ Z, σ = 〈F × {1}〉+, and (X,D) the corresponding affine toric pair.
Let

∑
Γj be a generic dual tropical arrangement and π : (Y,E) → (X,D) the induced partial reso-

lution.
Let g : (Y, E) → 0 ∈ M be a (complex analytic or algebraic) deformation of (Y,E) over a smooth

germ 0 ∈ M, f : (X ,D) → 0 ∈ M the blow-down deformation of (X,D), and Π: Y → X the obvious
morphism.

Let
∑

Γ′
j be another generic dual tropical arrangement and π′ : (Y ′, E′) → (X,D) the induced partial

resolution.



SMOOTHING GORENSTEIN TORIC FANO 3-FOLDS 29

If the morphism Π: Y → X is small, then there exists a birational transformation over X :

(Y, E)

Π $$■
■■

■■
■■

■■

Φ //❴❴❴❴❴❴❴❴❴ (Y ′, E ′)

Π′

zztt
tt
tt
tt
t

(X ,D)

such that:

(i) The morphism Π′ : Y ′ → X ′ is small;
(ii) The morphism f ◦Π′ : Y ′ → M is flat;
(iii) The rational map (Y ′, E′) 99K (Y ′, E ′) is a morphism and it sends (Y,E) isomorphically to the

fibre over 0 ∈ M;
(iv) With the inclusion of Part (ii), the morphism f ◦ Π′ : (Y ′, E ′) → (0 ∈ M) is a deformation of

(Y ′, E′);
(v) The birational map Φ: (Y, E) 99K (Y ′, E ′) is a composition of moves of type I, their inverses, and

type II–IV of Definition 6.3 and Lemma 6.2.

Lemma 6.2. Let (Y,E) be one of the toric pairs corresponding to the tropical arrangements pictured
on the left of Figures 9–12 and π : (Y,E) → (X,D) the associated contraction of the “internal” proper
curves and surfaces on Y .

Let g : (Y, E) → 0 ∈ M be a (complex analytic or algebraic) deformation of (Y,E) over a smooth
germ 0 ∈ M, f : (X ,D) → 0 ∈ M the blow-down deformation of (X,D), and Π: Y → X the obvious
morphism.

Let (Y ′, E′) be the pair given by the tropical arrangements pictured on the right of the same figure
and π′ : (Y ′, E′) → (X,D) the induced partial resolution.

If the morphism Π: Y → X is small, then there exists a birational transformation over X :

(Y, E)

Π $$■
■■

■■
■■

■■

Φ //❴❴❴❴❴❴❴❴❴ (Y ′, E ′)

Π′

zztt
tt
tt
tt
t

(X ,D)

such that:

(i) The morphism Π′ : Y ′ → X ′ is small;
(ii) The morphism f ◦Π′ : Y ′ → M is flat;
(iii) The rational map (Y ′, E′) 99K (Y ′, E ′) is a morphism and it sends (Y,E) isomorphically to the

fibre over 0 ∈ M;
(iv) With the inclusion of Part (ii), the morphism f ◦ Π′ : (Y ′, E ′) → (0 ∈ M) is a deformation of

(Y ′, E′);
(v) The effect on the Kodaira–Spencer morphisms with values in T1

Y,E, T
1
Y ′,E′ is pictured in the four

cases in Figures 9–12 using the identification T1
Y,E = H0

(
∆, ν⋆ν

⋆(−KY )
)
of Lemma 3.4. Here

A(x) =
∑
aix

i, B(y) =
∑
biy

i, etc.

Figure 9 can also be read from right to left and the appropriate statements hold.

Definition 6.3. The birational maps (Y, E) 99K (Y ′, E ′) of Lemma 6.2, pictured in Figures 9–12, are
called moves of type I–IV and — reading Fig. 9 from right to left — the inverse of a move of type I.

Proof of Theorem 6.1. The morphism π : Y → X is projective by Theorem A.6. (Recall that a subdi-
vision of a lattice polyhedron P ⊂ N ⊗R is regular iff the associated proper birational toric morphism
to the affine toric variety X = Spec k[Cone(P × {1})∨ ∩ (N ⊕ Z)∨] is projective.)

We can rearrange the
∑

Γj into the
∑

Γ′
j by a sequence of moves of type I, its inverse, and II–IV

as described in Lemma 6.2. So, by induction, we may assume that π : Y → X and π′ : Y ′ → X factor
through Z → X such that in the toric affine chart at a 0-stratum of Z, the morphisms Y → Z and
Y ′ → Z are as described in Lemma 6.2. Using Lemma 3.4 and the description of the global infinitesimal
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λ+ xA(x)

λ+ yB(y)

λ+ zC(z)

µ+ uD(u)

µ+ vE(v)

µ λ

λ

99K
λ+ xA(x)

λ+ yB(y) λ

λ+ zC(z)

µ+ uD(u)

µ+ vE(v)

Figure 9. Move of Type I.

µ+ uD1(u)

λ+ uD0(u)

λ

λ+ xA(x)

µ+ zC(z)

λ+ yB(y)

99K

λ+ uD0(u)

µ+ uD1(u)

λ

λ+ xA(x)

µ+ zC(z)

λ+ yB(y)

Figure 10. Move of Type II.

λ1 + xA(x)

λ2 + zC(z) λ2

λ3
λ2 + uD(u)λ1

λ3 + vE(v) λ1 + yB(y)

λ3 + wF (w)
99K

λ1 + xA(x)

λ2 + zC(z)

λ2 + uD(u)

λ1 + yB(y)λ3 + vE(v)

λ3

λ2

λ1

λ3 + wF (w)

Figure 11. Move of type III

deformations of (Y,E) in terms of local data in § C.2, we may replace X by the toric affine chart at
a 0-stratum of Z, so that we are in the situation of Lemma 6.2. The statement then follows from
Lemma 6.2.

�

Proof of Lemma 6.2. Step 1: existence We construct the birational map Φ: Y 99K Y ′. We will see
that it is a log-flip in the sense of the minimal model program and then its existence will follow from
standard results in the minimal model program.
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λ1 + xA(x)

λ2 + zC(z)

λ3

λ2 + uD(u)

λ3 + vE(v)

λ1 + yB(y)

λ3 + wF (w)
99K

λ1 + xA(x)

λ2 + zC(z) λ2 + uD(u)

λ1 + yB(y)

λ3 + vE(v)

λ3

λ3 + wF (w)

Figure 12. Move of type IV

Note that Y → X and Y ′ → X have relative Picard rank 1 and we are assuming that Π is small.
Let A be a Π-ample divisor on Y. Let H be a hyperplane section of X containing π∗A. Let ∆ be the
effective Cartier divisor ǫ(π∗H−A) for 0 < ǫ ≪ 1, ǫ ∈ Q. Then (Y,∆) is klt and, since Π is crepant,
−(KY + ∆) is Π-ample. We take Π′ : Y ′ → X to be the log terminal model over X of Π: Y → X .
In the algebraic case it exists by [10, Theorem 1.2]; in the complex analytic case it exists by [20,
Theorem 1.2]. Part (i) also follows: since Π is small, also Π′ is small.

Step 2 By the theorem on formal functions and the formula

Y ′ = ProjX


⊕

n≥0

Π∗OY

(
n(KY +∆)

)



the formal completion of Π′ : Y ′ → M over 0 ∈ M may be computed from the formal completion of
Π.

Step 3: proof for type I, its inverse, and type III The proof will follow from the:

Claim 6.4. In the set up of moves of type I, its inverse, and type III, let g : (Y,E) → Ar be the
simultaneous resolution of the local Altmann deformation from Proposition 2.11.

The family g : Y → Ar is miniversal.

Let us first prove the claim. It is enough to prove that the Kodaira–Spencer map for g : Y → Ar is
an isomorphism. We have an exact sequence

H0(NEY ) → T1
Y,E → T1

Y → 0,

cf. Lemma 2.17. We have NEY = OE(E) = OE(−KY ) and T1
Y,E = H0(ν∗ν∗O∆(−KY )) by

Lemma 3.4, and the map H0(NEY ) → T1
Y,E is the restriction map. Moreover E = −KY = π∗(−KX) is

principal; fix a trivializationOY (−KY ) = OY . We observe that the map H0(NEY ) → T1
Y,E = H0(O∆′)

has image H0(O∆) ⊂ H0(O∆′), and deduce that the Kodaira–Spencer map is an isomorphism as re-
quired.

Parts (ii–iv) of the statement follow easily from versality of the family Y ⊂ Y → (0 ∈ Ar). Indeed
for this family the morphism Y′ → X is the simultaneous resolution of the same local Altmann family
corresponding to the second arrangement. In particular it is clear from the statement of Proposi-
tion 2.11 that Y′ → (0 ∈ Ar) is a deformation of Y ′. The statement follows from Step 2 and the fact
that the formal completions of Y → (0 ∈ M) and Y ′ → (0 ∈ M) are pulled back from Y → (0 ∈ Ar)
and Y′ → (0 ∈ Ar).

Part (v) is not difficult to prove: the induced birational map Y 99K Y ′ is an isomorphism outside
the unique exceptional divisor(s), which are mapped to the 0-stratum x ∈ X . The Kodaira–Spencer
map is constant in the internal curves and the claimed effect is the only solution that is consistent
with Lemma 3.4.

Step 4: proof for type II and type IV The proof follows the outline of Step 3. For example
in the case of moves of type II a miniversal deformation family of (Y,E) is constructed explicitly in
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Example C.12. The base of the miniversal family is the infinite dimensional ind-scheme A∞ = lim
−→

An.
The miniversal property works for deformations over finite dimensional C-algebras A; in practice this
means that every deformation over SpecA is the pull-back of a deformation (Yn,En) → An via a
morphism SpecA→ An, for some finite n.

In Claim C.13 miniversal deformation families (Y,E) → A∞ of (Y,E) and (Y′,E′) → A∞ of (Y ′, E′)
are constructed, and the birational map Y 99K Y′ is also constructed. Parts (ii–iv) follow; for Part (v)
see Part (iv) of Claim C.13.

The case of moves of type IV is similar and easier. �

7. Proof of Theorem 1.20

We work in the analytic category throughout this section.

Lemma 7.1. Let P be a 3-dimensional reflexive polytope endowed with amd, (X,D) the corresponding
Fano toric pair and π : (Y,E) → (X,D) the induced partial resolution.

Let 0 ∈ D be a small analytic disk and g : Y → D a smoothing of Y . For all 0 < |t| << 1
H2(Yt;Q) = H2(Y ;Q).

Proof. The Milnor fibre for the smoothing of a qODP deformation retracts onto a lens space S3/Z/aZ.
�

We prove the following more precise version of Theorem 1.20.

Theorem 7.2. Let P be a 3-dimensional reflexive polytope endowed with amd, (X,D) the correspond-
ing Fano toric pair and π : (Y,E) → (X,D) the induced partial resolution.

Choose a 1-parameter deformation of (Y,E) over a small analytic disk 0 ∈ D with generic Kodaira–
Spencer class, and consider the blow-down deformation

(Y,E)

��

π

$$■
■■

■■
■■

■■

�

� // (Y, E)

g

��

Π

$$■
■■

■■
■■

■■

(X,D)

zz✉✉
✉✉
✉✉
✉✉
✉

�

� // (X ,D)

f
zz✉✉
✉✉
✉✉
✉✉
✉✉

{0}
�

� // D

Note that it follows from the matching condition along dull edges that the Kodaira–Spencer class
s ∈ T1

Y,E = H0
(
∆′, ν⋆(−KY )

)
of the deformation enjoys the following property:

For all edges e = [v, w] ≤ P and all 1 ≤ i < j ≤ ℓe, writing

si = s|∆e
i
∈ H0

(
∆e
i ,−KY |∆e

i

)
= H0 (Γe,−KX |Γe)

si − sj has simple zeros in Gm = Γe r {xv, xw}.
Then for all 0 < |t| << 1, Xt has precisely one ODP for all e = [v, w], x ∈ Γe r {xv, xw}, and

1 ≤ i < j ≤ ℓe such that si(x) = sj(x), located near x ∈ Γe, and it is smooth everywhere else.
Above all ODP in Xt, Yt has precisely one rational curve with normal bundle O(−1) ⊕ O(−1) in

the homology class of
∑

i<k≤j C
e
k in H2(Yt;Q) = H2(Y ;Q).

Remark 7.3. (1) In particular, the theorem states that Xt has ordinary double points: this
finishes the proof of Theorem 1.17.

(2) The statement indeed is a more precise version of Theorem 1.17. Indeed it is a simple exercise
to compute the number of singular points on a general fibre.

The proof, given in § 7.1, will be a (simple) consequence of the following:

Lemma 7.4. Let P be a 3-dimensional reflexive polytope P endowed with amd, (X,D) the correspond-
ing Fano toric pair and π : (Y,E) → (X,D) the induced partial resolution.
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Consider a miniversal complex analytic deformation of (Y,E) over an analytic germ 0 ∈ M and its
blow-down:

(Y,E)

��

π

$$■
■■

■■
■■

■■

�

� // (Y, E)

g

��

Π

$$■
■■

■■
■■

■■

(X,D)

zz✉✉
✉✉
✉✉
✉✉
✉

�

� // (X ,D)

f
zz✉✉
✉✉
✉✉
✉✉
✉

{0} �
� // M

For x ∈ X and 0 < ε, denote by Bx(ε) ⊂ X the open ball with centre at x and radius ε.
Then for all xv ∈ X in the 0-skeleton there exists 0 < ε such that for all sufficiently general§ m ∈ M,

Xm ∩Bxv (ε) is smooth.

Proof. Assume for a contradiction that the conclusion fails. Then there exists a flat projective family
of curves ψ : C → z0 ∈ Z over an analytic germ z0 ∈ Z and a commutative diagram

C

ψ

��

ι // Y

Π

��
Z

x //

m   ❆
❆❆

❆❆
❆❆

❆ X

f

��
M

such that

(i) For all z ∈ Z, ι : Cz →֒ Ym(z) is the inclusion of a subscheme. Put in other words, C/Z is a family
of curves in Y/M.

(ii) m : Z → M is proper and surjective.
(iii) x(z0) = xv.

Note that, because the diagram is commutative, for all z ∈ Z the curve Cz ∈ Ym(z) is contracted by
the map Π to the point x(z) ∈ Xm(z).

Let gv : (Yv , Ev) → Sv be the simultaneous resolution of the global Altmann deformation; in other
words, the complex analytic deformation whose existence was established in Proposition 2.14.

Because g : (Y, E) → 0 ∈ M is a miniversal deformation, there is a diagram where both squares are
Cartesian

(Yv, Ev)

Πv

��

// (Y, E)

Π

��
(Xv,Dv)

fv

��

// (X ,D)

f

��
Sv µ

// M

By Proposition 2.5, for general t ∈ Sv, for all z ∈ Z such that m = m(z) = µ(t), the singular locus
of Xm near xv consists of a disjoint union of curves with transverse type A singularities and the curve
Cz ⊂ Ym → Xm is a connected union of irreducible components of a fibre of the minimal resolution
along one of these A-curves.

§that is, outside a complex analytic strict subset W ( M
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For the rest of the proof we restrict all our families and diagrams to an affine neighbourhood of
xv ∈ X . By Theorem 6.1, there exists a birational transformation over X :

(Y, E)
Φ //❴❴❴❴❴❴❴❴❴

Π $$■
■■

■■
■■

■■
(Y ′, E ′)

Π′

zztt
tt
tt
tt
t

(X ,D)

Inducing new families

(Y ′, E′)

��

π′

%%❏
❏❏

❏❏
❏❏

❏❏

�

� // (Y ′, E ′)

g′

��

Π′

$$❏
❏❏

❏❏
❏❏

❏❏

(X,D)

yyttt
tt
tt
tt
t

�

� // (X ,D)

f
zzttt

tt
tt
tt
t

{0} �
� // M

and C′

ψ′

��

ι′ // Y ′

Π′

��
Z

x //

m   ❇
❇❇

❇❇
❇❇

❇ X

f

��
M

where now the (class of the) exceptional curve C′
z is the class of the fibre of the surface (Ej ⊂ Y ′) →

(Γ ⊂ X) shaded in Fig. 13. It follows from this that the curve C′
z0 ⊂ Y ′ is the internal fibre in the

λ+ uAn+1(u)

λ+ uAn(u)

λ+ uAj(u)

λ+ uAj−1(u)

λ+ uA0(u)

λ+ yC(y)

λ

λ

λ

λ+ xB(x)

Figure 13. Exceptional curve and tangent vector ξ ∈ T0M = H0
(
∆′, ν⋆ν

⋆(−KY ′)
)
.

surface Ej . The figure also depicts — following our usual conventions, see e.g. Lemma 6.2 — a tangent
vector ξ ∈ T0M = H0

(
∆′, ν⋆ν

⋆(−KY ′)
)
.

The birational map Φ: (Y, E) 99K (Y ′, E ′) is a composition of moves of type I, their inverses, and
type II–IV, see Definition 6.3. By Lemma 6.2, a generic tangent vector ξ ∈ T0M has the property —
see Fig. 13 — that Aj−1(0) 6= Aj(0). The statement now follows from Lemma 7.5, implying that the
curve C′

z0 does not deform to a general fibre. �
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Lemma 7.5. Consider the toric pair (X,D) where

X = An+1 × A1
u =

(
xy + zn+1 = 0

)
⊂ A4

x,y,z,u

D = (uz = 0) ⊂ X

Note that D has three components: D = Du +Dx +Dy ⊂ X, where Du = (u = 0), Dx = (z = y = 0)
and Dy = (z = x = 0).

Let π : Y → X be the minimal resolution with chain of exceptional divisors E1, . . . , En and strict
transforms F = D′

u, E0 = D′
x, En+1 = D′

y labelled as pictured in Fig. 15.
Consider a 1-parameter analytic deformation of (Y,E) over a small disk and its blow-down:

(Y,E)

��

π

$$■
■■

■■
■■

■■

�

� // (Y, E)

g

��

Π

$$■
■■

■■
■■

■■

(X,D)

zz✉✉
✉✉
✉✉
✉✉
✉

�

� // (X ,D)

f
zz✉✉
✉✉
✉✉
✉✉
✉✉

{0} �
� // D

Assume that the Kodaira–Spencer class ξ ∈ T1
Y,E of the deformation, in the notation pictured in

Fig. 15 with Aj(u) ∈ C[u], B(x) ∈ C[x], C(y) ∈ C[y], is such that the Aj(0) ∈ C are pairwise distinct.
Then for all small enough 0 6= t ∈ D the fibre Xt is smooth.

Proof. Lemma 2.17 gives an exact sequence:

H0 (E,NEY ) → T1
Y,E → T1

Y → (0)

From this, using Fig. 15 to picture a vector ξ ∈ T1
Y,E, we see that

(a) T1
Y = C[u]n+1/C[u], where C[u] acts by translation:

A(u) : (A1(u), . . . , An+1(u)) 7→ (A(u) +A1(u), . . . , A(u) +An+1(u))

and
(b) The map T1

Y,E → T1
Y takes a vector ξ ∈ T1

Y,E as pictured in Fig. 15 to the equivalence class of
the tuple (A1(u), . . . , An+1(u)).

The result follows from the following:

Claim 7.6. Let g : Y → D be a deformation of Y over a small disk and f : X → D its blow-down. If
the Kodaira–Spencer class ξ ∈ T1

Y is (the class of) a tuple (A1(u), . . . , An+1(u)) where the Aj(0) ∈ C

are pairwise distinct, then for all 0 < t ∈ D small enough Xt is smooth.

To show the claim, note that any 1-parameter family g : Y → D with Kodaira–Spencer class ξ blows
down to a deformation f : X → D given by an equation:

[
xy =

n+1∏

i=1

(z − tAi(u)) mod t2
]
⊂ A4

x,y,z,u × Dt

and smoothness is easily checked with the Jacobian criterion. �

7.1. Proof of Theorem 7.2. The singular fibres occur next to the points in the 1-strata Gm =
Γe r {xv, xw} where for some i, j si − sj = 0.

The formula for the homology class is an exercise starting from the construction of the simultaneous
resolution Π: Y → X in Example C.10.

Appendix A. The Cayley polytope, mixed subdivisions, and tropical arrangements

The notions below were (to our knowledge) first introduced and studied in [54] and in [28]. For a
self-contained treatment we recommend [16, §9.2] and [33, §4.1].
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A.1. Conventions concerning polyhedra and polytopes. Fix a real vector space V of finite
dimension. A cone is a non-empty subset of V which is closed under sum and multiplication by non-
negative real numbers. If S is a subset of V , then we denote by 〈S〉+ the conical hull of S, i.e. the
smallest cone containing S. A subset of V is a polyhedral cone if it coincides with the conical hull of
a finite set, or equivalently if it is the intersection of finitely many closed half-spaces whose boundary
hyperplanes contain the origin.

A polyhedron is the intersection of finitely many closed half-spaces, so it is always convex and closed.
There is the obvious notion of face of a polyhedron. The 0-dimensional faces are called vertices and
the top-dimensional ones facets. A compact polyhedron is called polytope; equivalently, a polytope is
the convex hull of a finite set. The convex hull of a subset S ⊂ V is denoted by [S].

Now fix a lattice L and consider the real vector space LR := L⊗ZR. A cone in LR is called rational
if it is the conical hull of finitely many points in L. A lattice polytope in L is a subset of LR which is
the convex hull of finitely many points in L.

Definition A.1. A polyhedral subdivision of a polytope F is a finite collection S of polytopes with
the following properties: every face of an element of S is an element of S, the intersection of two
elements of S is either empty or a common face, and the union of the elements in S is F . The elements
of S are called cells of the subdivision. If the cells are simplices, then the subdivision is called a
triangulation. If F is a lattice polytope in a lattice L, then a lattice polyhedral subdivision of F is a
polyhedral subdivision whose cells are lattice polytopes. A polyhedral subdivision of a polytope F
is called regular it its cells are the domains of linearity of a convex piecewise affine-linear continuous
function ϕ : F → R.

A.2. The Cayley construction.

Definition A.2. Let F be a lattice polytope in a lattice L and let m = (F = F1 + · · · + Fk) a
Minkowski decomposition. The Cayley polytope of m is the lattice polytope

Cayley(m) = [F1 + e1, . . . , Fk + ek]

in the lattice L⊕ Zk, where e1, . . . , ek are the vectors of the standard basis of Zk.

By construction, Cayley(m) is contained in the affine hyperplane x1 + · · ·+xk = 1 of L⊕Zk, where
x1, . . . , xk are the standard coordinates of Zk.

Remark A.3. The Cayley polytope does not have interior lattice points; more precisely

Cayley(m) ∩ (L⊕ Zk) =

k⋃

i=1

(Fi ∩ L)× {ei}.

The polytope F is an affine linear slice of the Cayley polytope: indeed, the map

(A.1) ι : F → Cayley(m) ∩

(
LR ×

{(
1

k
, . . . ,

1

k

)})

defined by ι(v) = 1
k (v + e1 + · · · + ek) is bijective. Notice that this map does not respect the lattice

structure.

Definition A.4. Let F be a lattice polytope in a lattice L and m = (F = F1 + · · ·+Fk) a Minkowski
decomposition.

A cell C̃ ⊂ Cayley(m) is necessarily the convex hull

C̃ = [Cj × {ej} | j = 1, . . . , k]

of cells Cj × {ej} ⊂ Fj × {ej}, and then C = ι−1(C̃) =
∑
Cj ⊂ F is a cell.

(a) A mixed cell is a cell C ⊂ F of this form, together with a choice, for all j, of a cell Cj ⊂ Fj such

that C =
∑
Cj .

¶

¶This choice is not unique, and this is why we need to build it into the definition.
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(b) A mixed subdivision of F is a subdivision of F consisting of the mixed cells induced by the cells of a
lattice polyhedral subdivision of Cayley(m). In this case we say that the subdivision is subordinated
to m.

(c) A lattice triangulation T of Cayley(m) is fine if every lattice point of Cayley(m) is a 0-stratum of
some simplex of T . A mixed subdivision of F subordinated to m is fine if it is induced by a fine
lattice triangulation T of Cayley(m). In other words, a mixed subdivision subordinated to m is
fine if and only if it has no non-trivial refinement among mixed subdivisions subordinated to m.

(d) A mixed subdivision of F subordinated to m is coherent if it is induced by a regular lattice
polyhedral subdivision triangulation of Cayley(m).

Remark A.5. It obvious that a coherent mixed subdivision is itself regular.

The following statement is a synthesis of (for example) [51, Theorem 1.4], [33, Theorem 1.11], [33,
Corollary 4.10], [32, § 3, § 4].

Theorem A.6. Let F be a lattice polygon in a rank-2 lattice N , and m = (F = F1 + · · · + Fk) a
Minkowski decomposition of F .

The following three sets are in (compatible) 1-to-1 correspondence:

(i) The set of coherent mixed subdivisions of F subordinated to m;
(ii) The set of regular subdivisions of the polytope Cayley(m);
(iii) The set of arrangements of tropical curves T (f1), . . . , T (fk), where fi is a tropical polynomial

with Newton polytope Fi.

In this correspondence, fine mixed subdivision of F correspond to fine triangulations and to generic
tropical arrangements.

Proof. The correspondence between mixed subdivisions of F and subdivisions of Cayley(m) is an
elementary (almost tautologous), well-known and well-explained fact, see for example in [16, § 9.2]
and [51].

We briefly sketch the correspondence with tropical arrangements (it also is an elementary fact).
Consider the tropical semiring T, that is, R ∪ {∞} with operations min,+:

x⊕ y = min{x, y} and x⊙ y = x+ y

A tropical polynomial

f(x) =
⊕

ν∈N

cν ⊙ x⊙ν ∈ T[N ]

(where almost all cν = ∞) evaluates at a ∈MR = Hom(N,R) as

f(a) = min{cν + 〈a, ν〉 | ν ∈ N}

The tropical hypersurface defined by f is the subset T (f) ⊂MR consisting of those a ∈MR where the
minimum is attained at least twice.

It is almost obvious that

T (f ⊙ g) = T (f) ∪ T (g) andNewt(f ⊙ g) = Newt(f) + Newt(g)

A tropical polynomial f induces a regular subdivision of its Newton polyhedron F = Newt(f)

defined as follows. The extended Newton polyhedron F̃ ⊂ NR ⊕ R — defined to be the convex hull of
the {(ν, cν+p) | p ≥ 0, ν ∈ N}— is the supergraph of a PL function ϕ : F → R: the regular subdivision
is the one whose maximal cells are the domains of linearity of ϕ. We denote this subdivision by S(f).
It is an elementary fact [33, Theorem 1.1] that S(f) is dual to the tropical hypersurface T (f).

The key fact is this: the union of two tropical hypersurfaces is dual to the regular mixed subdivision
derived from the regular subdivisions dual to the two hypersurfaces, see [32, § 3, § 4]. �
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Appendix B. Deformations of pairs

In this section we develop the general theory of deformations of pairs (X,D) of a scheme X and
effective Cartier divisor D on X . This is basically a long exercise in deformation theory. The results
must be well-known to many algebraic geometers but, surprisingly given the vast amounts of existing
literature on deformation theory, we could not find them written up anywhere. The first § B.1 treats
deformations of pairs (X,L) of a scheme and line bundle; in § B.2 we discuss deformations of pairs
(X,D) of a scheme and Cartier divisor.

We work over a fixed base field k. If S is an algebraic stack of finite type over k, LS denotes the
cotangent complex of S over k, ΩS denotes the cotangent sheaf of S over k, i.e., ΩS = H0(LS), and
TS denotes the tangent sheaf of S over k, i.e., TS = Hom(ΩS ,OS). Similarly, we use the notation Lf ,
Ωf , Tf for a morphism f between two algebraic stacks of finite type over k.

B.1. Deformations of a scheme together with a line bundle. Here we fix a separated scheme
X of finite type over the field k and a line bundle L on X .

Notation B.1. Write QL = P 1(L)⊗OX
L∨, where P 1(L) is the first sheaf of principal parts of L.

We refer the reader to [26, Definition 16.3.1] for the definition of the sheaves of principal parts.
There is a natural short exact sequence of coherent sheaves on X

(B.1) (0) → ΩX → QL → OX → (0)

that is associated to the class in Ext1(OX ,ΩX) = H1(X,ΩX) that is the image of the class of L
in H1(X,O∗

X) via the homomorphism of abelian groups H1(X,O∗
X) → H1(X,ΩX) induced on first

cohomology by the homomorphism of sheaves of abelian groups dlog : O∗
X → ΩX given by g 7→ g−1dg.

We refer the reader to [5, §3] and to [56]. The short exact sequence (B.1) is called the Atiyah class of
L, see [29, IV.2.3].

Remark B.2. It is possible to give an explicit description of the sheaf QL. Fix an affine open cover
U = {Ui}i that trivialises the line bundle L. Set Uij = Ui ∩ Uj . Let gij ∈ OX(Uij)

∗ be transition
functions of L over U , i.e. the diagram

L|Uij

OUij

si|Uij

<<①①①①①①①①
OUij

sj |Uij

bb❋❋❋❋❋❋❋❋

·gij
oo

commutes, where si (resp. sj) is a nowhere vanishing section of L over Ui (resp. Uj). In other words,

sj |Uij
= gijsi|Uij

. Then the line bundle is associated to the cohomology class [{gij}] ∈ Ȟ1(U ,O∗
X) ⊆

H1(X,O∗
X).

The sheaf QL is obtained by choosing isomorphisms ϕi : QL|Ui
→ ΩUi

⊕ OUi
and on the pairwise

intersections we have the following commutative diagram of isomorphisms.

QL|Uij

ϕi|Uij

xxqqq
qq
qq
qq
q ϕj|Uij

&&▼▼
▼▼

▼▼
▼▼

▼▼

ΩUij
⊕OUij 


idΩUij

dgij
gij

0 idOUij




// ΩUij
⊕OUij

Remark B.3. The sheaf QL∨ associated to the dual line bundle L∨ is isomorphic to QL, but the
short exact sequence (B.1) for L∨ differs from the one for L by a minus sign in one of the two maps.

Remark B.4. If X is smooth, then the dual sequence of (B.1) is

(0) → OX → D1(L) → TX → (0)
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where D1(L) is the sheaf of first order differential operators of L and the homomorphism D1(L) → TX
is the symbol map.

We next see that the sheaf QL controls the deformations of the pair (X,L). We also consider the
forgetful map Def(X,L) → Def(X).

Proposition B.5. Let X be a scheme of finite type over the field k and let L be an invertible sheaf
on X. Then:

(i) There exists an exact sequence

(B.2) H1(X,OX) → TDef(X,L) → TDef(X) → H2(X,OX)

(ii) If H2(X,OX) = (0), then the forgetful map Def(X,L) → Def(X) is smooth.
(iii) If X is reduced and k is perfect, then Ext1(QL,OX) is the tangent space of Def(X,L) and the

exact sequence (B.2) is obtained by taking the cohomology long exact sequence of (B.1).
(iv) If X is normal and k is perfect, then Ext2(QL,OX) is an obstruction space of Def(X,L).

Before giving the proof, we prove a homological algebra lemma and we make a remark on the
cotangent complex of a smooth quotient stack.

Lemma B.6. Let n ≥ 0 be an integer. Let X be a noetherian scheme and let Z ⊆ X be a closed
subset. Let A be a complex of OX-modules with coherent cohomology such that:

(1) for all i > 0 Hi(A) = (0),
(2) for all i < 0 Hi(A) is set-theoretically supported on a subset of Z.

If for every scheme-theoretic point x ∈ Z we have depthOX,x ≥ n, then for all 0 ≤ j ≤ n the map

Extj(H0(A),OX) → Extj(A,OX)

induced by the truncation map A → τ≥0A and the quasi-isomorphism H0(A) → τ≥0A, is an isomor-
phism.

Remark B.7. In Lemma B.6 the assumption on the depth of the stalks of the sheaf OX at the points
of Z implies that every irreducible component of Z has codimension ≥ n in X . Conversely, if X is
Cohen–Macaulay and every irreducible component of Z has codimension ≥ n in X then the assumption
on the depth of OX at points of Z is automatically satisfied.

Proof of Lemma B.6. By [27, Proposition 3.7] we get that for all i 6= 0 and q < n Extq(Hi(A),OX) =
(0). By the spectral sequence

Ep,q2 = Hp(Extq(Hi(A),OX)) ⇒ Extp+q(Hi(A),OX)

we get the vanishing

(B.3) for all i 6= 0 and j < n Extj(Hi(A),OX) = (0)

Let I be an injective resolution of OX . Consider the double complex K given by Ki,j = Hom(A−i, Ij)
that computes Ext•(A,OX). The double complex K gives two spectral sequences; one of these has

first page equal to ′Ei,j1 = Hom(H−i(A), Ij), and second page equal to ′Ei,j2 = Extj(H−i(A),OX). The

vanishing in (B.3) implies that, for all 0 ≤ j ≤ n, ′E0,j
2 = Extj(H0(A),OX) is the unique non-zero

term in ′E2 with total degree j. Moreover, for all 0 ≤ j ≤ n, the differentials in ′E2 starting from
and arriving in ′E0,j

2 are zero. This implies that, for all 0 ≤ j ≤ n, ′E0,j
2 is isomorphic to the limit

Extj(A,OX). �

Remark B.8. Fix a field k and an algebraic group G over k acting on a smooth scheme Y over k.
Then the cotangent complex L[Y/G] of the quotient stack [Y/G] is quasi-isomorphic to the following
complex of G-equivariant sheaves on Y concentrated in degrees 0, 1:

ΩY → g∨ ⊗k OY

where g∨ is the dual of the Lie algebra g of G and the differential is dual to the adjoint action on
tangent vectors.
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Proof of Proposition B.5. We denote by BGm the quotient stack [Spec k /Gm] that classifies line bun-
dles, i.e. Gm-torsors. Let εL : X → BGm be the classifying morphism of L. The morphisms

X
εL−→ BGm → Spec k

induce a distinguished triangle in the derived category of X :

Lε∗LLBGm
→ LX → LεL → Lε∗LLBGm

[1]

By Remark B.8 we have LBGm
= OBGm

[−1]. Therefore Lε∗LLBGm
= OX [−1]. By shifting we obtain a

distinguished triangle

(B.4) LX → LεL → OX → LX [1]

This is exactly the Atiyah class of the line bundle L, see [29, IV.2.3], so

QL = H0(LεL)

and

(B.5) for all i 6= 0 Hi(LX) ≃ Hi(LεL)

Giving an infinitesimal deformation of the scheme X together with the line bundle L is equivalent to
giving an infinitesimal deformation of the morphism εL which is trivial on the target. Therefore infin-
itesimal automorphisms, tangent space and obstructions of Def(X,L) are controlled by the cotangent
complex LεL of the morphism εL. The distinguished triangle (B.4) induces the exact sequence

(0) → H0(OX) → Ext0(LεL ,OX) → Ext0(LX ,OX) →

→ H1(OX) → Ext1(LεL ,OX) → Ext1(LX ,OX) →

→ H2(OX) → Ext2(LεL ,OX) → Ext2(LX ,OX)

where Ext1(LεL ,OX) is the tangent space of Def(X,L) and Ext2(LεL ,OX) is an obstruction space for
Def(X,L). This immediately implies the well known fact that H2(OX) is an obstruction space for the
forgetful map Def(X,L) → Def(X); this proves (i) and (ii).

Now we need to prove (iii) and (iv). Assume that k is perfect. Let Z be the complement of the
regular locus ofX . Since k is perfect, XrZ is smooth over k and hence the negative degree cohomology
sheaves of the cotangent complex LX are supported on subsets of Z. By (B.5) also the negative degree
cohomology sheaves of LεL are supported on subsets of Z.

If X is reduced, then X is R0 (i.e. codim(Z,X) ≥ 1) and S1, hence for all x ∈ X depthOX,x ≥

min{1, dimOX,x}. We apply Lemma B.6 to LεL and we obtain an isomorphism Ext1(LεL ,OX) ∼=
Ext1(QL,OX). This proves (iii). Part (iv) is proved in the same way, because if X is normal then X
is R1 and S2. �

B.2. Deformations of a scheme together with an effective Cartier divisor. Here we fix a
separated scheme X of finite type over the field k and an effective Cartier divisor i : D →֒ X .

Lemma B.9. There is a natural injective homomorphism of OX-modules

OX(−D) →֒ QOX(D)

where QOX(D) is the coherent sheaf on X associated to the line bundle OX(D) in Definition B.1.

Proof. We use the notation as in Remark B.2: U = {Ui}i is an affine open cover of X which trivialises
OX(D), si is a nowhere vanishing section of L on Ui, {gij} are the transition functions of OX(D). Let
s ∈ H0(X,OX(D)) be the global section which defines D. Let fi ∈ OX(Ui) be such that s|Ui

= fisi.
Then fi|Uij

= gijfj |Uij
.

The homomorphism OX(−D) → QOX(D) in the statement is given by the collection of homomor-
phisms OUi

→ ΩUi
⊕OUi

which maps 1 ∈ OUi
to

(
dfi
−fi

)
∈ ΩUi

⊕OUi
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These homomorphisms glue together because the diagram

OUij



dfi
−fi





// ΩUij
⊕OUij


idΩUij

dgij
gij

0 idOUij




��
OUij 

dfj
−fj




//

g−1

ij

OO

ΩUij
⊕OUij

commutes. The homomorphism is injective because the fi’s are not zero divisors, since D is a Cartier
divisor. �

Definition B.10. We define ΩX(logD) to be the cokernel of the homomorphism OX(−D) → QOX(D)

constructed in Lemma B.9.

It is immediate that ΩX(logD) is a coherent sheaf on X . We have a short exact sequence

(B.6) (0) −→ OX(−D) −→ QOX(D) −→ ΩX(logD) −→ (0)

Remark B.11. One can see that ΩX(logD) is the sheaf of logarithmic differentials of X equipped
with logarithmic structure (in the Zariski topology) induced by D over the standard log point. This
logarithmic structure on X is obtained by the charts N → OUi

given by 1 7→ fi.

Remark B.12. If X and D are smooth over k, then ΩX(logD) is the usual sheaf of logarithmic
differentials on X with respect to the divisor D. If X is smooth and D is a normal crossing divisor,
our ΩX(logD) is not the usual sheaf of logarithmic differentials on X with respect to D.

For example, if X = A2 = Spec k[x, y] and D = Spec k[x, y]/(xy) is the union of the two axes

then ΩX(logD) is generated by dx, dy and d(xy)
xy and is not locally free, whereas the usual sheaf of

logarithmic differentials on X with respect to D is a free OX -module of rank 2, generated by dx
x , dy

y .

See Proposition B.18 for a general treatment of the case in which X is smooth.

Lemma B.13. There is a short exact sequence

(B.7) (0) −→ ΩX −→ ΩX(logD) −→ OD −→ (0)

When X and D are smooth over k, the exact sequence (B.7) is the residue sequence.

Proof of Lemma B.13. The short exact sequence (B.7) can be constructed locally on affine open cover
of X which trivialises OX(D). Alternatively, one can consider the commutative diagram

(0) // 0 //

��

OX(−D) //

��

OX(−D) //

��

(0)

(0) // ΩX // QOX(D)
// OX

// (0)

with exact rows and apply the snake lemma. �

We next see that, in many cases, the sheaf ΩX(logD) controls the deformations of the pair (X,D),
i.e. of the closed embedding D →֒ X .

Proposition B.14. Let X be a scheme of finite type over the field k and let D →֒ X be an effective
Cartier divisor. Denote by NDX = OD(D) the normal bundle of D in X. Then:

(i) There exists an exact sequence

H0(D,NDX) → TDef(X,D) → TDef(X) → H1(D,NDX)

(ii) If H1(D,NDX) = 0, then the forgetful map Def(X,D) → Def(X) is smooth.
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(iii) If X is reduced and k is perfect, then Ext1(ΩX(logD),OX) is the tangent space of Def(X,D)
and the exact sequence in (i) is obtained by taking the cohomology exact sequence of (B.7).

(iv) If X is normal and k is perfect, then Ext2(ΩX(logD),OX) is an obstruction space of Def(X,D).

Proof. We consider the quotient stack [A1/Gm], where the action of Gm on A1 has weight 1. This
stack classifies line bundles with a section, see [42, §10.3], so we can consider the classifying morphism
ηD : X → [A1/Gm] associated to the effective Cartier divisor D on X . We have a sequence of maps of
algebraic stacks of finite type over k

X
ηD
−→ [A1/Gm]

p
−→ BGm −→ Spec k

where p is given by A1 → Spec k and p ◦ ηD = εOX(D) is the classifying morphism of the line bundle
OX(D). There is a distinguished triangle in the derived category of X :

Lη∗DL[A1/Gm] → LX → LηD → Lη∗DL[A1/Gm][1]

Denote by t the standard coordinate on A1, and by OA1(r) the Gm-equivariant sheaf on A1 with
weight r ∈ Z. By Remark B.8 we have that L[A1/Gm] is quasi-isomorphic to the complex of Gm-

equivariant sheaves on A1

OA1(−1)
t

−→ OA1

in degrees 0, 1. It follows that Lη∗DL[A1/Gm] is quasi-isomorphic to the 2-term complex

OX(−D) → OX

in degrees 0, 1, where the differential is given by the section of OX(D) that defines D. This implies
that Lη∗DL[A1/Gm] is quasi-isomorphic to OD[−1]. Therefore, by shifting we obtain the distinguished
triangle

(B.8) LX → LηD → OD → LX [1]

The truncation of this distinguished triangle in degree 0 is the short exact sequence (B.7), because we
have

ΩX(logD) = H0(LηD )

and

for all i 6= 0 Hi(LX) ≃ Hi(LηD )

Giving an infinitesimal deformation of the scheme X together with the Cartier divisor D is equiva-
lent to giving an infinitesimal deformation of the morphism ηD that is trivial on the target. Therefore
infinitesimal automorphisms, tangent space and obstructions of Def(X,D) are controlled by the cotan-

gent complex LηD of the morphism ηD. Since for all i Ext
i(OD,OX) = Hi−1(NDX), the distinguished

triangle (B.8) induces the exact sequence

(0) → Ext0(LηD ,OX) → Ext0(LX ,OX) →

→ H0(NDX) → Ext1(LηD ,OX) → Ext1(LX ,OX) →

→ H1(NDX) → Ext2(LηD ,OX) → Ext2(LX ,OX)

where Ext1(LηD ,OX) is the tangent space of Def(X,D) and Ext2(LηD ,OX) is an obstruction space
for Def(X,D). This immediately implies the well known fact that H1(NDX) is an obstruction space
for the forgetful map Def(X,D) → Def(X); this proves (i) and (ii).

The proof of (iii) and (iv) is very similar to the one of Proposition B.5 and is omitted. �

Now we make some comments on the sheaves Exti(ΩX(logD),OX), which help to compute the

k-vector space Exti(ΩX(logD),OX).

Notation B.15. Write TX(− logD) = Hom(ΩX(logD),OX).
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Remark B.16. If (X,D) is a toric pair over k, then TX(− logD) coincides with the usual logarith-
mic tangent sheaf, i.e. the one associated to the standard log structure that exists on a toric variety.
Moreover, under these assumptions, TX(− logD) ∼= On

X where n = dimX . Compare these two re-
sults for the logarithmic tangent sheaf with similar statements (but different assumptions) about the
logarithmic cotangent sheaf in Remark B.12 and in Proposition B.18.

The two results above hold because of the following argument. Let Tlog be the usual logarithmic
tangent sheaf; it is well known that Tlog ∼= On

X . Our TX(− logD) is reflexive because it is the dual of
a coherent sheaf. By Remark B.12, Tlog and TX(− logD) coincide on the open subset of X where the
divisor D is smooth (or empty). The complement of this open subset has codimension ≥ 2 in X , so
the two reflexive sheaves Tlog and TX(− logD) coincide everywhere on X .

Remark B.17. Let OX(−D) ⊆ OX be the ideal sheaf of the closed embedding D →֒ X . Let
NDX = OD(D) = Hom(OX(−D),OD) be the normal bundle of D in X . By dualising the exact
sequence (B.7) we get the exact sequence

(0) → TX(− logD) → TX → NDX → Ext1(ΩX(logD),OX) → Ext1(ΩX ,OX) → (0)

where the homomorphism

(B.9) TX → NDX

maps a derivation ∂ : OX → OX into the composition of the restriction ∂|OX(−D) : OX(−D) → OX

with the surjection OX ։ OD. This implies that TX(− logD) is the subsheaf of TX consisting of
the derivations ∂ such that ∂h ∈ OX(−D) for every section h of the ideal sheaf OX(−D) of D in X .
Moreover we have

for all i ≥ 2 Exti(ΩX(logD),OX) ≃ Exti(ΩX ,OX)

Proposition B.18. If X is smooth over k, then the following statements hold.

(1) ΩX(logD) is a locally free OX-module if and only if D is smooth over k.
(2) If X has pure dimension n and Z is the closed subscheme of D defined by the (n− 1)st Fitting

ideal of the OD-module ΩD, then there is an isomorphism

Ext1(ΩX(logD),OX) ≃ OZ(D)

(3) For all i there is an isomorphism

Exti(ΩX(logD),OX) ≃ Hi(TX → NDX)

where the 2-term complex on the right is in degrees 0 and 1 and the differential is the homo-
morphism in (B.9).

Remark B.19. Assume that we are under the assumptions of (2). Since ΩX |D is a locally free
OD-module of rank n and the conormal bundle OD(−D) is a line bundle on D, the conormal exact
sequence

OD(−D) −→ ΩX |D −→ ΩD −→ (0)

gives that the (n − 1)st Fitting ideal of the OD-module ΩD is locally generated by the entries of the
n × 1 matrix which represents the homomorphism OD(−D) → ΩX |D. More explicitly, on an open
subset of X where OX(D) and ΩX are free this homomorphism is given by the differential of the local
equation which defines D. Therefore, Z coincides set-theoretically with the non-smooth locus of D.

If, in addition, D is a reduced normal crossing divisor on X , then Z is the singular locus of D
equipped with the reduced structure.

Remark B.20. Combining Proposition B.18(3) and Proposition B.14(iii) implies that if X is smooth
over k then H1(TX → NDX) is the tangent space of the deformation functor of the pair (X,D). This
result was proved in [52, Proposition 8] via explicit computations.

Proof of Proposition B.18. (1) Since the question is local, we may assume that X is affine and D is
the zero-locus of a global function f ∈ OX(X). By base change to the algebraic closure of k, we may
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assume that k is algebraically closed. By étale descent, we may assume that X is the affine space
An = Spec k[x1, . . . , xn].

The exact sequence in (B.6) implies that ΩX(logD) is the cokernel of the injective homomorphism

ϕ : OAn → O
⊕(n+1)
An which maps 1 to




∂f
∂x1

...
∂f
∂xn

−f




For all closed points p ∈ An(k), the following statements are equivalent:

• the sheaf ΩX(logD) is free in a neighbourhood of p in An,
• the stalk ΩX(logD)p is a flat OAn,p-module,

• Tor
OAn,p

1 (ΩX(logD)p, kp) = 0,

• ϕ⊗ idkp : kp → k
⊕(n+1)
p is injective,

• at least one among ∂f
∂x1

(p), . . . , ∂f∂xn
(p), f(p) is non-zero,

• p does not lie in the non-smooth locus of D.

Since p is arbitrary, this concludes the proof of (1).

(2) Since X is smooth, ΩX is locally free, so Ext1(ΩX ,OX) = 0. By the exact sequence in Re-
mark B.17, Ext1(ΩX(logD),OX) is the cokernel of the homomorphism TX → NDX in (B.9).

Consider the restriction NDX = OD(D) ։ OZ(D) from D to Z. If we show the equality

(B.10) im (TX → NDX) = ker (NDX → OZ(D))

then we are done because this will imply that OZ(D) is the cokernel of TX → NDX . The equal-
ity (B.10) is a local problem in the fppf topology, so we can assume, as we did in the proof of (1), that
k is algebraically closed, X = An = Spec k[x1, . . . , xn] and D is the zero-locus of a non-zero polynomial
f ∈ k[x1, . . . , xn]. In this case, the homomorphism TX → NDX is O⊕n

X → OD given by the row of the
n partial derivatives of f and the homomorphism NDX → OZ(D) is just the restriction OD → OZ .
By Remark B.19, Z is the closed subscheme of An whose ideal is generated by f and its n partial
derivatives. This concludes the proof of (2).

(3) We have the following sequence of quasi-isomorphisms of complexes

RHom(ΩX(logD),OX) ≃
[
Q∨

OX(D) → OX(D)
]
≃ [TX → NDX ]

where the 2-term complexes in the middle and on the right are both concentrated in degrees 0 and 1.
The first quasi-isomorphism holds because, since X is smooth, the short exact sequence (B.6) gives
a locally free resolution of ΩX(logD). The second quasi-isomorphism follows via the snake lemma
applied to the following morphism of short exact sequences:

(0) // OX
// Q∨

OX(D)
//

��

TX //

��

(0)

(0) // OX
// OX(D) // NDX // (0)

Via the sequence of quasi-isomorphisms above we get

Exti(ΩX(logD),OX) = Hi RHom(ΩX(logD),OX)

= Hi RΓRHom(ΩX(logD),OX)

= Hi(TX → NDX)

This concludes the proof of Proposition B.18. �
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Example B.21. Let f, g ∈ k[x1, . . . , xn+1] be polynomials such that g, f is a regular sequence. Con-
sider the following closed subschemes of the affine space An+1: X = Spec k[x1, . . . , xn+1]/(g) and
D = Spec k[x1, . . . , xn+1]/(f, g). Clearly, D is an effective Cartier divisor on X . The conormal se-
quence of X →֒ An+1 → Spec k is the exact sequence

OX




∂g
∂x1

...
∂g

∂xn+1




−−−−−−−→ O
⊕(n+1)
X −→ ΩX −→ (0)

The short exact sequence (B.6) is

(0) −→ OX


df
−f




−−−−−→ ΩX ⊕OX −→ ΩX(logD) −→ (0)

Combining these two exact sequences gives the exact sequence

O⊕2
X




∂g
∂x1

∂f
∂x1

...
...

∂g
∂xn+1

∂f
∂xn+1

0 −f




−−−−−−−−−−−−−→ O
⊕(n+2)
X −→ ΩX(logD) −→ (0)

Example B.22. Consider the 3-fold ordinary double point X = Spec k[x, y, z, w]/(xy − zw) and its
closed subscheme D = Spec k[x, y, z, w]/(xy, zw). This is Example B.21 with g = xy− zw and f = xy.
D is a reduced effective Cartier divisor onX with 4 irreducible components, each of which is isomorphic
to A2. The last exact sequence in Example B.21 is

(0) −→ O⊕2
X




y y
x x
−w 0
−z 0
0 −xy




−−−−−−−−−−→ O⊕5
X −→ ΩX(logD) −→ (0)

By dualising and doing some column operations and row operations, we deduce that the group
Ext1(ΩX(logD),OX) is isomorphic to the cokernel of the homomorphism O⊕4

X → O⊕2
X given by the

matrix (
x y 0 0
0 0 z w

)

This shows that Ext1(ΩX(logD),OX) is isomorphic to

OX

(x, y)
⊕

OX

(z, w)
=
k[x, y, z, w]

(x, y, zw)
⊕
k[x, y, z, w]

(xy, z, w)
= OΓ1

⊕OΓ2

where Γ1(resp. Γ2) is the closed subscheme of D (and of X) defined by the ideal generated by x, y, zw
(resp. xy, z, w). Hence the fibre of Ext1(ΩX(logD),OX) at the closed point corresponding to the
maximal ideal (x, y, z, w) has dimension 2.

Now we give a more conceptual way to describe Ext1(ΩX(logD),OX). Consider the following closed
subscheme of D: Γ = Spec k[x, y, z, w]/(xy, xz, xw, yz, yw, zw). It is reduced and has 4 irreducible
components, each of which is isomorphic to A1. Γ is the closed subscheme of D defined by the 2nd

Fitting ideal of the OD-module ΩD, so Γ is the non-smooth locus of D equipped with the reduced
structure. Γ1 and Γ2 are the union of 2 of the 4 irreducible components of Γ and Γ is the union of
Γ1 and Γ2. Consider the disjoint union Γ′ = Γ1

∐
Γ2. The closed embeddings Γ1 →֒ Γ and Γ2 →֒ Γ

give a finite surjective morphism ν : Γ′ → Γ which is a partial resolution. Then Ext1(ΩX(logD),OX)
is isomorphic to ν⋆OΓ′ = ν⋆ν

⋆OΓ.
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Appendix C. Miniversal deformations of pairs

C.1. Statement of purpose.

Notation C.1. In this section, A4
x,y,z,u (for example) denotes SpecC[x, y, z, u], that is, affine 4-

dimensional space with a choice of coordinate functions labelled x, y, z, u.
We adopt a similar convention in a host of similar situations.

The purpose of this section is to write down explicit examples of miniversal deformations of toric
pairs (Y,E) — where Y is locally a hypersurface and E is a Cartier divisor — that are needed in the
proof of Theorem 6.1.

We allow Y to be nonproper and to have nonisolated singularities. Even in the simplest case when
Y = A3

x,y,z and E = (xyz = 0) ⊂ Y , the miniversal deformation is infinite-dimensional. Indeed in this
case:

T1
Y,E =

{
λ+ xA(x) + yB(y) + zC(z) | λ ∈ C, A(x) ∈ C[x], B(y) ∈ C[y], C(z) ∈ C[z]

}

To address the infinite-dimensionality we work with ind-schemes. The terminology of ind-schemes
is introduced in [34, 22] but (fortunately) we don’t actually need any of the theory.

In § C.3 we construct “by hand” several explicit examples of deformation families of toric pairs
(Y,E) over a smooth ind-scheme — in fact, see below, over A∞ = lim

−→
An. We want to check that

these families are miniversal. The key is that, although we construct these families over A∞, we only
claim miniversality over Artin rings. In § C.2 we prove some general principles: the key result is
Corollary C.6, stating that a family is miniversal if it is universal for first-order deformations. To
prove the Corollary, first, using Lemma C.3, we reduce to the local case. Second, in our setting the
local case may be treated by the explicit and elementary Lemma C.5, since we may assume that Y is
a hypersurface.

C.2. General principles.

Notation C.2. (i) We denote by A∞ the ind-scheme

A∞
a1,a2,... = lim

−→
m

Ama1,...,am

where the limit is taken over the inclusions

Ama1,...,am = (am+1 = 0) →֒ Am+1
a1,...,am+1

(ii) Writing Aml = Spec k[a1, . . . , am]/(a1, . . . , am)l+1, we denote by

Â∞ = lim
−→
l

lim
−→
m

Aml

the formal completion of A∞, also an ind-scheme.
(iii) In § C.3 we often have a situation where we regard the “power series” A(x) =

∑∞
i=0 aix

i as a
function on the ind-scheme A1

x × A∞
a0,a1,....

Lemma C.3. Let Y be a normal variety and E ⊂ Y a Cartier divisor. Assume that Hi(Y, TY (− logE)) =
0 for i = 1, 2. Let {Ui}i∈I be an affine open covering of Y . Let A be an Artinian local k-algebra, finite
dimensional over k. For all i ∈ I, let (Ui, Ei)/ SpecA be an infinitesimal deformation of the pair
(Ui, E|Ui

) over A.
If the induced deformations of (Ui ∩ Uj, E|Ui∩Uj

) over A are isomorphic, then there exists a defor-
mation (Y, E)/ SpecA of (Y,E) over A such that its restriction to Ui is isomorphic to (Ui, Ei)/ SpecA
for each i ∈ I, and it is uniquely determined up to isomorphism of deformations. �

Definition C.4. Let (Y,E) be a pair consisting of a variety Y and Cartier divisor E.
Consider deformations of the pair (Y,E) over Artinian localC-algebrasA, assumed finite-dimensional

over C.
A deformation (Yu, Eu) of (Y,E) over either 0 ∈ Ad for some d ∈ N, or the ind-scheme 0 ∈ A∞ =

lim
−→

Am is miniversal if:
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(1) For all A and deformation (Y, E) of (Y,E) over A there is a morphism SpecA→ A∞ such that
(Y, E)/A is isomorphic to the pull back of (Yu, Eu)/A∞;

(2) If A = k[t]/(t2) the morphism SpecA→ A∞ in (1) is uniquely determined.

Lemma C.5. Let (Y,E) be a pair consisting of an affine hypersurface Y = (f = 0) ⊂ An and a Cartier
divisor E = (g = 0) ⊂ Y . Consider deformations of the pair (Y,E) over Artinian local C-algebras A,
assumed finite-dimensional over C. There is a miniversal deformation (Yu, Eu) of (Y,E) over either
0 ∈ Ad for some d ∈ N or the ind-scheme 0 ∈ A∞ := lim

−→
Am.

Moreover, this miniversal deformation may be explicitly constructed as follows:

Let hi ∈ C[x1, . . . , xn], i ∈ I, be a lift of a basis of the C-vector space

T1
Y = coker

(
H0(An, TAn) → H0(An, NY A

n)
)
= C[x1, . . . , xn]/(f,

∂f
∂x1

, . . . , ∂f∂xn
)

Let kj ∈ C[x1, . . . , xn], j ∈ J be a lift of a basis of the C-vector space

T1
Y,E = coker

(
H0(Y, TY ) → H0(Y,NEY )

)

under the surjection

C[x1, . . . , xn] → C[x1, . . . , xn]/(f, g) = H0(Y,NEY )

Then a miniversal deformation of the pair (Y,E) is given by the family

Yu = (f +
∑

tihi = 0) ⊂ Anx1,...,xn
× Ad{ti,uj |i∈I, j∈J}

Eu = (g +
∑

ujkj = 0) ⊂ Y

where d is the cardinality of the disjoint union I ⊔ J (either finite or countably infinite).

Proof. By definition of ind-scheme, a morphism SpecA → Ad is given by an assignment ti 7→ ai,
uj 7→ bj for some ai, bj ∈ A with finitely many nonzero. The assertion follows from e.g. [9], p. 23,
Theorem 6.1 and Remark 6.1. �

Corollary C.6. Let (Y,E) be a pair of a normal variety and Cartier divisor. Assume that (Y,E) has
an atlas of charts as in Lemma C.5 and that Hi(Y, TY (− logE)) = 0 for i = 1, 2.

Suppose given a deformation of (Y,E) over a base 0 ∈ Ae for e finite or countably infinite, the
deformation is miniversal iff it is universal for first order deformations, equivalently, the Kodaira–
Spencer map T0A

e → T1
Y,E is an isomorphism.

Proof. By Lemma C.3 we may assume that Y is affine. Let (Yu, Eu) → Ad be the miniversal family
provided by Lemma C.5. By versality of this family, for all orders l we have compatible maps Ael → Adl ,
where:

• if e is finite, Ael = Spec k[s1, . . . se]/(s1, .., se)
l+1;

• if e is countably infinite and Ae = lim
−→

Am, Ael := lim
−→

Aml

Now one checks that if the map for l = 1 is an isomorphism then for all l the maps Ael → Adl are
isomorphisms. �

C.3. Explicit examples of miniversal deformations of pairs. Below we describe several deforma-
tion families of toric pairs (Y,E) over A∞ that are flat over a Zariski open neighborhood of the origin,
but we only claim (mini)versality for infinitesimal deformations. In all cases the claimed miniversality
follows from the description of T1

Y,E given in Lemma 3.4 and Corollary C.6. In our setting, the as-

sumption Hi(Y, TY (− logE)) = 0 for i = 1, 2 of the Corollary is satisfied by Theorem 3.7(2). We will
also need to work locally on X , where π : Y → X is a crepant partial resolution of a Gorenstein toric
Fano 3-fold, for which we need the assertion Riπ∗TY (− logE)) = 0, which is proved in the same way.

Example C.7. A miniversal deformation of the pair
(
Y,E

)
=

(
A3
x,y,z, (xyz = 0)

)
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is given by the family

Y = A3
x,y,z ×M

E =
(
xyz + λ+ xA(x) + yB(y) + zC(z) = 0

)
⊂ Y

over M = A1
λ × A∞

a0,a1,... × A∞
b0,b1,...

× A∞
c0,c1,..., where A(x) =

∑∞
i=0 aix

i, B(y) =
∑∞
i=0 biy

i, C(z) =∑∞
i=0 ciz

i.

Example C.8. We describe a miniversal deformation of the pair (Y,E) where

Y = (xy + zw = 0) ⊂ A4
x,y,z,w

E = (zw = 0) ⊂ Y

The following claim is a simple exercise based on the previous sections, especially Proposition B.14 (iii)
and Lemma 3.4.

Claim C.9. The family

g : (Y, E) → M = A1
λ × A1

µ × A∞
a0,a1,... × A∞

b0,b1,... × A∞
c0,c1,... × A∞

d0,d1,...

given by equations as follows is a miniversal deformation of the pair (Y,E):

Y =
(
xy + zw = λ+ µ+ xA(x) + yB(y) + zC(z) + wD(w)

)
⊂ A4

x,y,z,w ×M(C.1)

E =
(
zw = λ+ xA(x) + yB(y)

)
⊂ Y(C.2)

where A(x) =
∑∞

i=0 aix
i, B(y) =

∑∞
i=0 biy

i, etc.
The Kodaira–Spencer map of the family is shown in Fig. 14 , where the picture represents a vector

in T1
Y,E = H0 (∆, ν⋆ν

⋆(−KY )), see Lemma 3.4.

λ+ xA(x)

λ+ yB(y)

µ+ zC(z)

µ+ wD(w)

Figure 14. Kodaira–Spencer map of the family of Equations C.1 and C.2.

Example C.10. In this example we describe a miniversal deformation of the toric pair (Y,E) where
Y is the product of the minimal resolution of the surface An-singularity with A1.

In more detail, consider the pair (X,D) where

X = An × A1
u =

(
xy + zn+1 = 0

)
⊂ A4

x,y,z,u

D = (zu = 0) ⊂ X

Note that D has three irreducible components: D = Du +Dx +Dy where Du = (u = 0), Dx = (z =
y = 0) and Dy = (z = x = 0). Let π : Y → X be the minimal resolution with chain of exceptional
divisors E1, . . . , En and strict transforms D′

u, E0 = D′
x, En+1 = D′

y as pictured in Fig 15.

Our goal is to describe the miniversal deformation family of the pair (Y,E), where E = D′
u +∑n+1

i=0 Ei.
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Let

M = (A∞)
n+1

× A1
λ × A∞

b0,b1,... × A∞
c0,c1,...

and consider the family of pairs f : (X ,D) → M given by equations:

X =
[
xy +

n+1∏

i=1

(z −Ai(u)) = 0
]
⊂ A4

x,y,z,u ×M(C.3)

D =
[
uz + λ+ xB(x) + yC(y) = 0

]
⊂ X(C.4)

where:

• For j = 1, . . . , n+ 1, denoting by aj0, aj1, . . . the coordinate functions on the jth factor of the

product (A∞)
n+1

, Aj(u) =
∑∞
i=0 ajiu

i;
• B(x) =

∑∞
i=0 bix

i, C(y) =
∑∞
i=0 ciy

i.

Claim C.11. There exists a simultaneous resolution Π: (Y, E) → (X ,D) inducing a flat morphism
g = f ◦Π: (Y, E) → M where:

(i) The rational map (Y,E) 99K (Y, E) is a morphism that identifies (Y,E) with the fibre g⋆(0);
(ii) With the identification in Part (i), g : (Y, E) → 0 ∈ M is a miniversal family for the pair (Y,E);
(iii) The Kodaira–Spencer map of the family is shown in Fig. 15, where the picture represents a vector

in T1
Y,E = H0 (∆, ν⋆ν

⋆(−KY )), see Lemma 3.4.

E0 = D′
x

E1

En−1

En

En+1 = D′
y

D′
u

λ+ uAn+1(u)

λ+ uAn(u)

λ+ uAn−1(u)

λ+ uA2(u)

λ+ uA1(u)

λ+ yC(y)

λ

λ

λ

λ

λ+ xB(x)

Figure 15. Kodaira–Spencer map of the family of Equations C.3 and C.4.

(iv) The action of the symmetric group Sn+1 that permutes the factors of (A∞)n+1 lifts uniquely to:
• a biregular action on (X ,D) such that f : (X ,D) → M is equivariant, and
• a birational action on the pair (Y, E) such that Π: Y → X is equivariant.

We prove the claim by induction on n; see also [35, 2.2.2. Theorem]. Consider the blow up X ′ → X
of the divisor

Z = (x = z −A1(u) = 0) ⊂ X

The variety X ′ is given by the equation (z′x = x′A1) ⊂ X × P1
x′:z′ .



50 ALESSIO CORTI, PAUL HACKING, AND ANDREA PETRACCI

In the chart where z′ 6= 0, setting x̃ = x′/z′ and substituting x = x̃A1, we get

X ′ ∩ {z′ 6= 0} =
[
x̃y +

n∏

i=2

(z −Ai(u)) = 0
]
⊂ A4

x̃,y,z,u ×M

and we proceed to resolve singularities by induction on n.
In the chart where x′ 6= 0, setting z̃ = z′/x′ and substituting z = xz̃ +A1, we get

X ′ ∩ {x′ 6= 0} =
[
y + z̃

n+1∏

i=2

(z + (A1(u)−Ai(u)) = 0
]
⊂ A4

x,y,z̃,u ×M

and, solving for y, we see that X ′ is nonsingular in this chart. Working in this chart, we can prove the
statement concerning the Kodaira–Spencer map of the family. Indeed, in this chart

D′ ∩ {x′ 6= 0} =
[
xz̃u+ λ+ uA1(u) + xB(x) + yB(y) + · · · = 0

]
⊂ X

It follows from this last expression, by induction on n, that the Kodaira–Spencer map identifies
T0M with T1

Y,E , which shows that the family g : (Y, E) → 0 ∈ M is indeed a versal family.

Example C.12. In this example we describe a miniversal deformation of the pair (Y,E) given by the
tropical arrangement in Fig. 16.

In other words, consider the pair (X,D) where

X = (xy − uz2 = 0) ⊂ A4
x,y,z,u

D = (uz = 0) ⊂ X

Note that X has an A1-singularity along the u-axis. Our goal is to describe a miniversal deformation of
the pair (Y,E) where π : Y → X is the blow-up of the divisor Z = (x = z = 0) ⊂ X , and E = π−1(D).

The variety Y is given by the equation (z′x = x′z) ⊂ X × P1
x′:z′ .

In the chart where z′ 6= 0, setting x̃ = x′/z′, the equations of the pair (Y,E) are given by substituting
x = x̃z in the equations of (X,D):

Y = (x̃y − uz = 0) ⊂ A4
x̃,y,z,u

E = (uz = 0) ⊂ Y

Note that this is the pair of a 3-fold ordinary double point together with its toric boundary divisor,
already considered in Example C.8.

In the chart where x′ 6= 0, setting z̃ = z′/x′, the equations of the pair (Y,E) are given by substituting
z = xz̃ in the equations of (X,D):

Y = (y − xuz̃2 = 0) ⊂ A4
x,y,z̃,u

E = (xuz̃ = 0) ⊂ Y

We represent the pair (Y,E) with the generic tropical arrangement given in Fig. 16, where we also
label the “axes” by their respective coordinate functions. Consider the family of pairs

f : (X ,D) → M = A1
λ × A1

µ × A∞
a0,a1,... × A∞

b0,b1,... × A∞
c0,c1,... × (A∞)2

given by equations as follows:

X =
[
xy =

(
uz + λ+ µ+ xA(x) + yB(y) + zC(z) + uD1(u)

)(
z −D0(u)

)]
⊂ A4

x,y,z,u ×M(C.5)

D =
[
uz + λ+ xA(x) + yB(y) = 0

]
⊂ X(C.6)

where A(x) =
∑∞
i=0 aix

i, etc.

Claim C.13. Let Π: Y → X be the blow-up of the divisor

Z = (x = z −D0(u) = 0) ⊂ X

and E = Π−1(D). Then g = f ◦Π: (Y, E) → M is a flat morphism where
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u

u

x

z

y

Figure 16. Tropical arrangement for the pair (Y,E) of Example C.12.

(i) The rational map (Y,E) 99K (Y, E) is a morphism that identifies (Y,E) with the fibre g⋆(0);
(ii) With the identification in Part (i), g : (Y, E) → 0 ∈ M is a miniversal family for the pair (Y,E);
(iii) The Kodaira–Spencer map of the family is shown in Fig. 17, where the picture represents a vector

in T1
Y,E = H0 (∆, ν⋆ν

⋆(−KY )), see Lemma 3.4.

µ+ uD1(u)

λ+ uD0(u)

λ

λ+ xA(x)

µ+ zC(z)

λ+ yB(y)

Figure 17. Kodaira–Spencer map of the family of Equations C.5 and C.6.

(iv) Let Π′ : Y ′ → X be the blow-up of the divisor

Z ′ =
(
y = z −D0(u) = 0

)
⊂ X

and E ′ = Π′ −1(D). Then g′ = f ◦ Π′ : (Y ′, E ′) → M is a miniversal family for the pair (Y ′, E′)
given by the tropical arrangement in Fig. 18, also showing the Kodaira–Spencer map of the family.

The variety Y is given by the equation z′x = x′
(
z −D0(u)

)
in X × P1

x′:z′ . We examine in turn the
two charts of the blow-up.

In the chart z′ 6= 0, setting x̃ = x′/z′ and substituting x = x̃(z −D0(u)) in the equation for X we
obtain:

x̃y = uz + λ+ µ+ xA(x) + yB(y) + zC(z) + uD1(u)

with E given by λ+ uz + xA(x) + yB(y) = 0. Now compare with Example C.8.
In the chart x′ 6= 0, setting z̃ = z′/x′ and substituting

z = z̃x+D0(u)

in the equation for X we obtain

y = z̃
[
u
(
z̃x+D0(u)

)
+ λ+ µ+ xA(x) + · · ·

]
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λ+ uD0(u)

µ+ uD1(u)

λ

λ+ xA(x)

µ+ zC(z)

λ+ yB(y)

Figure 18. Kodaira–Spencer map of the family of Claim C.13.

where the important thing is that we can solve for y, that is, Y is nonsingular in this chart. The divisor
E is given by:

u
(
z̃x+D0(u)

)
+ λ+ xA(x) + yB(y) = 0

and then compare with Example C.7.
(iv) is similar to (i)–(iii).

Appendix D. Equivariant G-structures on versal deformations after Rim

Setup D.1. Fix an algebraically closed field k, and denote by B the category of fat points over k.
Consider a deformation category D fibered in groupoids over B with finite dimensional tangent space
T1 = |D(ε)|. For example, we can take D to be the category of infinitesimal deformations of a proper
algebraic variety X :

D = Def(X)

or a variant thereof.
Denote by γ : D → B the structure functor.
From now on we assume that for some d > 0 the d-dimensional torus T = Gdm acts on D. Then T

acts on T1 and we fix a T-invariant subspaceW ⊂ T1. Let B′ be the category whose objects are pairs
(S, j) of a fat point S over k and an embedding j : S →֒ W , and let D′ = D|B′. The group T acts on
D′ and B′ and the functor γ : D′ → B′ is G-equivariant.

Theorem D.2. Assume Setup D.1. There exists a formal object X̂ ∈ ob D̂′, equipped with a T-action,
and characterised by the following versal property.

For all objects ξ ∈ obD′ equipped with a T-action such that the morphism ξ → γ(ξ) is T-equivariant,

there exists a (non-unique) T-equivariant morphism i : γ(ξ) → γ(X̂ ) in B̂′ and a fibre square in D̂′

ξ //

��

X̂

��
γ(ξ)

i
// γ(X̂ )

where all morphisms are T-equivariant. �

References

[1] Mohammad Akhtar, Tom Coates, Sergey Galkin, and Alexander M. Kasprzyk. Minkowski polynomials and muta-
tions. SIGMA Symmetry Integrability Geom. Methods Appl., 8:Paper 094, 17, 2012. doi:10.3842/SIGMA.2012.094 .

[2] Klaus Altmann. Minkowski sums and homogeneous deformations of toric varieties. Tohoku Math. J. (2), 47(2):151–
184, 1995. doi:10.2748/tmj/1178225590.

https://doi.org/10.3842/SIGMA.2012.094
https://doi.org/10.2748/tmj/1178225590


SMOOTHING GORENSTEIN TORIC FANO 3-FOLDS 53

[3] Klaus Altmann. Infinitesimal deformations and obstructions for toric singularities. J. Pure Appl. Algebra,
119(3):211–235, 1997. doi:10.1016/S0022-4049(96)00029-1.

[4] Klaus Altmann. One parameter families containing three-dimensional toric Gorenstein singularities. In Explicit
birational geometry of 3-folds, volume 281 of London Math. Soc. Lecture Note Ser., pages 21–50. Cambridge Univ.
Press, Cambridge, 2000.

[5] Klaus Altmann and Jan Arthur Christophersen. Deforming Stanley–Reisner schemes. Math. Ann., 348(3):513–537,
2010. doi:10.1007/s00208-010-0490-x .

[6] Klaus Altmann and Jürgen Hausen. Polyhedral divisors and algebraic torus actions. Math. Ann., 334(3):557–607,
2006. doi:10.1007/s00208-005-0705-8 .

[7] Klaus Altmann, Nathan Owen Ilten, Lars Petersen, Hendrik Süß, and Robert Vollmert. The geometry of T -
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