
EXCEPTIONAL BUNDLES ASSOCIATED TO

DEGENERATIONS OF SURFACES

PAUL HACKING

1. Introduction

In 1981 J. Wahl described smoothings of surface quotient singularities
with no vanishing cycles [W81, 5.9.1]. Given a smoothing of a projective
surface X of this type, we construct an associated exceptional vector bundle
on the nearby fiber Y in the case H2,0(Y ) = H1(Y ) = 0. If Y = P2 we
show that our construction establishes a bijective correspondence between
the possible degenerate surfaces X and exceptional bundles on Y modulo a
natural equivalence relation. If Y is of general type then our construction
establishes a connection between components of the boundary of the moduli
space of surfaces deformation equivalent to Y and exceptional bundles on
Y .

Let n, a be positive integers such that a < n and (a, n) = 1. Consider the
cyclic quotient singularity

(0 ∈ A2/(Z/n2Z)),

Z/n2Z 3 1: (u, v) 7→ (ξu, ξna−1v), ξ = exp(2πi/n2).
(1.1)

We refer to (1.1) as a Wahl singularity of type 1
n2 (1, na−1). A Wahl singular-

ity admits a Q-Gorenstein smoothing, that is, a one parameter deformation
such that the general fiber is smooth and the canonical divisor of the total
space is Q-Cartier. The Milnor fiber of such a smoothing is a rational ho-
mology ball. So, if Y is the general fiber of a Q-Gorenstein smoothing of a
surface X with Wahl singularities, then the specialization map

H∗(Y,Q)→ H∗(X,Q)

is an isomorphism. For this reason, it is difficult to predict the existence of
the degeneration Y  X given the surface Y .

An exceptional bundle F on a projective surface Y is a locally free sheaf
such that Hom(F, F ) = C and Ext1(F, F ) = Ext2(F, F ) = 0. In particular F
is indecomposable, rigid (no infinitesimal deformations), and unobstructed
in families. So, if Y/(0 ∈ S) is a deformation of Y over a germ (0 ∈ S), then
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F deforms in a unique way to a family of exceptional bundles on the fibers
of Y/(0 ∈ S).

Theorem 1.1. Let X be a projective normal surface with a unique singu-
larity P ∈ X of Wahl type 1

n2 (1, na− 1). Let X/(0 ∈ T ) be a one parameter
deformation of X such that the general fiber Y is smooth and the canonical
divisor KX of the total space is Q-Cartier.

(1) Assume that H1(Y,Z) is finite of order coprime to n. Then the
specialization map

sp: H2(Y,Z)→ H2(X,Z)

is injective with cokernel isomorphic to Z/nZ.
(2) Assume in addition that H2,0(Y ) = 0. Then, after a base change

(0 ∈ T ′) → (0 ∈ T ) of ramification index a, there exists a reflexive
sheaf E on X ′ := X ×T T ′ such that
(a) F := E|Y is an exceptional bundle of rank n on Y , and
(b) E := E|X is a torsion-free sheaf on X such that its reflexive

hull E∨∨ is isomorphic to the direct sum of n copies of a reflex-
ive rank 1 sheaf A, and the quotient E∨∨/E is a torsion sheaf
supported at P ∈ X.

If H is a line bundle on X/T which is ample on the fibers, then F
is slope stable with respect to the the ample line bundle H := H|Y .
Moreover, we have

c1(F ) = nc1(A) ∈ H2(Y,Z) ⊂ H2(X,Z),

c2(F ) =
n− 1

2n
(c1(F )2 + n+ 1),

c1(F ) ·KY = ±a mod n,

and
H2(X,Z) = H2(Y,Z) + Z · (c1(F )/n).

Remark 1.2. The torsion-free sheaf E on X is a Gieseker semistable limit
of the family of stable exceptional bundles F on the fibers of X ′/T ′ over
T ′ \ {0}. If E is Gieseker stable, then it is uniquely determined by this
property. See [HL97, 2.B.1].

Remark 1.3. The exceptional bundles on Y obtained from F by dualizing
or tensoring by a line bundle arise from the degeneration X/(0 ∈ T ) in the
same way. Indeed, the dual E∨ of E satisfies the properties 1.1(2). Similarly,
if L is a line bundle on Y , then L extends to a reflexive rank 1 sheaf L on
X ′, and the reflexive hull of the tensor product E ⊗L satisfies the properties
1.1(2).

Recent work of Y. Lee and J. Park constructs new surfaces of general type
with H2,0 = H1 = 0 as Q-Gorenstein smoothings of rational surfaces with
Wahl singularities, see e.g. [LP07]. In these cases our construction produces
examples of exceptional bundles of rank greater than 1 on surfaces of general
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type. As far as I know these are the first such examples. In general little
is known about moduli spaces of stable bundles on surfaces of general type
unless the expected dimension is large.

The idea of the proof of Theorem 1.1 is as follows. After a base change
(which we suppress in our notation), there is a proper birational morphism

π : X̃ → X/(0 ∈ T )

with exceptional locus a normal surface W such that π(W ) = P ∈ X. The

special fiber X̃ := X̃0 is the union of X ′ (the strict transform of X) and W ,
with scheme theoretic intersection a smooth rational curve C. The surface
W is isomorphic to an explicit weighted projective hypersurface determined
by n and a. Our topological assumptions imply that there is a Cartier
divisor D′ on X ′ such that D′ · C = 1. Given an exceptional bundle G
on W such that G|C ' OC(1)⊕n, we glue G and OX′(D′)⊕n to obtain an

exceptional bundle Ẽ on the reducible surface X̃. Since Ẽ is exceptional it
extends uniquely to a locally free sheaf Ẽ on X̃/(0 ∈ T ), and the restriction

F of Ẽ to the general fiber Y is exceptional. The exceptional bundle G on
W = Wn,a is constructed by induction on a, using a degeneration of W to a
surface with a Wahl singularity of type 1

a2
(1, ab− 1), where b = n mod a.

Notation. We work in the algebraic category over the complex numbers.
By a germ (P ∈ S) we mean an étale neighborhood of a point P on an
scheme S of finite type over C, it being understood that we may restrict to
another étale neighborhood without further comment. By a one parameter
deformation of a scheme X we mean a flat morphism X → (0 ∈ T ) from a
scheme X to a smooth curve germ (0 ∈ T ), together with an identification
of X with the special fiber X0.

In what follows we use the shorthand Ad/1
r (a1, . . . , ad) or just 1

r (a1, . . . , ad)
for the cyclic quotient

Ad/(Z/rZ),

Z/rZ 3 1: (x1, . . . , xd) 7→ (ζa1x1, . . . , ζ
adxd), ζ = exp(2πi/r).

Some background on reflexive sheaves and toric geometry is reviewed in §7.

2. Wahl singularities

Let (P ∈ X) denote the Wahl singularity (0 ∈ A2
u,v/

1
n2 (1, na − 1)). The

canonical divisor KX is Q-Cartier of index n, that is, nKX is Cartier and
n ∈ N is minimal with this property. Thus KX defines a cyclic covering

π : (Q ∈ Z)→ (P ∈ X)

of degree n, which is unramified over X \ {P}, such that KZ = π∗KX

is Cartier. The covering π is called the index one cover. It is uniquely
determined locally for the étale topology at P ∈ X. Explicitly, we have

Z = A2
u,v/

1
n(1,−1) = (xy = zn) ⊂ A3

x,y,z



4 PAUL HACKING

where x = un, y = vn, z = uv. Thus

X = (xy = zn) ⊂
(
A3
x,y,z/

1
n(1,−1, a)

)
.

A smoothing of (P ∈ X) is given by

(2.1) X = (xy = zn + t) ⊂
(
A3
x,y,z/

1
n(1,−1, a)

)
× A1

t .

The link L of the singularity (P ∈ X) is the lens space S3/ 1
n2 (1, na− 1).

Let M denote the Milnor fiber of the smoothing (2.1), a smooth 4-manifold
with boundary L. (See e.g [L84, 2.B] for the definition and basic properties
of the Milnor fiber of the smoothing of an isolated singularity.)

Lemma 2.1. [W81, 5.9.1] The Milnor fiber M is a rational homology ball.
More precisely, π1(M) = Z/nZ, Hi(M,Z) = 0 for i > 1, and the map
π1(L)→ π1(M) is the quotient map Z/n2Z→ Z/nZ.

Proof. Note that by construction M is the quotient of the Milnor fiber MZ of
a smoothing of (Q ∈ Z), a Du Val singularity of type An−1, by a free action
of Z/nZ. The Milnor fiber MZ has the homotopy type of a bouquet of n−1
copies of S2. So in particular MZ is simply connected and π1(M) = Z/nZ.
Since M is Stein of complex dimension 2 it has the homotopy type of a cell
complex of real dimension 2. Finally the Euler number e(M) = e(MZ)/n =
1, so b2(M) = 0.

The map π1(L) → π1(M) is surjective because the inverse image of L in
the universal cover MZ of M is connected. Writing L = S3/(Z/n2Z) and
M = MZ/(Z/nZ) as above, the map π1(L) → π1(M) is identified with the
quotient map Z/n2Z→ Z/nZ. �

Remark 2.2. A more explicit analysis yields the following topological de-
scription of M , see [K92, 2.1]. Let NZ be the topological space obtained
from n copies ∆j of the closed disc ∆ := (|z| ≤ 1) ⊂ C by identifying their
boundaries. Define a free action of Z/nZ on NZ by

∆j → ∆j+1, z 7→ ζz, ζ = exp(2πi/n),

where the indices j are understood modulo n. Let N denote the quotient
NZ/(Z/nZ). Then M is homotopy equivalent to N .

The Q-Gorenstein deformations of a quotient singularity are by definition
those deformations induced by an equivariant deformation of the index one
cover [H04, 3.1]. A one parameter smoothing of a quotient singularity is Q-
Gorenstein iff the canonical divisor of the total space is Q-Cartier [H04, 3.4].
The deformation (2.1) is a versal Q-Gorenstein deformation, that is, every
Q-Gorenstein deformation of (P ∈ X) is obtained from (2.1) by pullback.
Indeed, the versal deformation of the index one cover (Q ∈ Z) is given by

(xy = zn + an−2z
n−2 + · · ·+ a1z + a0) ⊂ A3

x,y,z × An−1
a0,...,an−2

.

The Z/nZ-equivariant deformations of (Q ∈ Z) are given by the locus

A1
a0 = (a1 = a2 = · · · = an−2 = 0) ⊂ An−1

a0,...,an−2
.
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The Q-Gorenstein condition is natural from the point of view of Mori
theory and is used in the definition of the compactificationM of the moduli
space of surfaces of general type analogous to the Deligne–Mumford com-
pactification of the moduli space of curves [KSB88]. The following observa-
tion is a key motivation for our paper.

Lemma 2.3. Let X be a normal projective surface such that KX is ample,
X has a unique singularity of Wahl type, and H2(TX) = 0. Then the Kollár–
Shepherd-Barron moduli stack M of stable surfaces is smooth near [X] and
locally trivial deformations of X determine a codimension one component of
the boundary of M.

Proof. Let X/(0 ∈ D) be the versal Q-Gorenstein deformation of X, (P ∈
Xloc)/(0 ∈ C) the versal Q-Gorenstein deformation of the Wahl singularity
(P ∈ X), and let f : (0 ∈ D) → (0 ∈ C) be a morphism such that the
deformation (P ∈ X )/(0 ∈ D) of (P ∈ X) is isomorphic to the pullback of
(P ∈ Xloc)/(0 ∈ C). (Note that both versal deformations are algebraizable:
indeed X/(0 ∈ D) is polarized by the relative dualizing sheaf ωX/D so we can
apply the Grothendieck existence theorem [G61, 5.4.5], and deformations of
isolated singularities are algebraizable by [E73]. So we may assume that
f : (0 ∈ D)→ (0 ∈ C) is a morphism of schemes of finite type over C). The
morphism f is smooth because H2(TX) = 0 (see Lemma 7.2). The space
(0 ∈ C) is smooth of dimension 1 and the general fiber of the deformation
(P ∈ Xloc)/(0 ∈ C) is smooth (see §2). In particular (0 ∈ D) is smooth, and
the locus H = f−1(0) ⊂ D of locally trivial deformations of X is smooth of
codimension 1.

Let M denote the coarse moduli space of the Deligne–Mumford stackM
of stable surfaces. Étale locally over [X] ∈ M , the stack M is identified
with the quotient stack [(0 ∈ D)/G] where G = Aut(X) (a finite group).
Thus the stack M is smooth at [X] ∈ M, and near [X] the boundary ∂M
ofM (the locus of singular surfaces) is given by the smooth divisor H ⊂ D.
Thus ∂M⊂M is smooth of codimension 1 at [X] ∈M. �

3. Blowup construction

Proposition 3.1. Let n and a be positive integers such that a < n and
(a, n) = 1. Let (P ∈ X )/(0 ∈ T ) be a one parameter Q-Gorenstein smooth-
ing of a Wahl singularity (P ∈ X) ' (0 ∈ A2

u,v/
1
n2 (1, na − 1)). Then, after

a base change (0 ∈ T ′) → (0 ∈ T ) of ramification index a, there exists a

birational morphism π : X̃ → X ′ satisfying the following properties.

(1) The locus W := π−1(P ) ⊂ X̃ is a normal surface isomorphic to the
weighted projective hypersurface

(XY = Zn + T a) ⊂ P(1, na− 1, a, n).

Moreover, W ⊂ X̃ is a Q-Cartier divisor.
(2) The morphism π restricts to an isomorphism X̃ \W → X \ {P}.
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(3) The special fiber X̃ := X̃0 is reduced and is the union of two com-

ponents X̃1 and X̃2 meeting along a smooth rational curve C, where
X̃1 is the strict transform of X and X̃2 = W is the exceptional di-
visor. The curve C ⊂ X̃1 is the exceptional curve of the restriction
p : X̃1 → X of π, and C = (T = 0) ⊂W .

(4) Let Q ∈ C ⊂ X̃ denote the point with homogeneous coordinates

(0 : 1 : 0 : 0). The reducible surface X̃ has normal crossing singular-
ities (xy = 0) ⊂ A3

x,y,z along C \ {Q}, an orbifold normal crossing

singularity (xy = 0) ⊂ A3
x,y,z/

1
na−1(1,−1, a2) at Q, and is smooth

elsewhere.
(5) The birational morphism p : X̃1 → X is the weighted blowup of P ∈

X with weights 1
n2 (1, na− 1) with respect to the orbifold coordinates

u, v. In particular the strict transform D′ of D = (v = 0) ⊂ (P ∈ X)
is a Cartier divisor such that D′ · C = 1.

Proof. Recall from §2 that the versal Q-Gorenstein deformation of (P ∈ X)
is given by

X ver = (xy = zn + t) ⊂
(
A3
x,y,z/

1
n(1,−1, a)

)
× A1

t .

We describe the construction of π for the versal deformation. In general we
obtain the morphism by pullback from the versal case. (Note that all the
assertions are preserved under pullback. Indeed, let g : (0 ∈ T ) → (0 ∈ A1

t )
be a morphism such that the deformation (P ∈ X )/(0 ∈ T ) of (P ∈ X) is

isomorphic to the pullback of (P ∈ X ver)/(0 ∈ A1
t ). Let (W ver ⊂ X̃ ver) be a

blowup of the base change of (P ∈ X ver) as in the statement, and (W ⊂ X̃ )

its pullback under g, with induced map gX̃ : X̃ → X̃ ver. Then W = 1
l g
∗
X̃W

ver

where l is the ramification index of g. Thus W is Q-Cartier because W ver

is Q-Cartier. The remaining assertions concern the special fiber and so are
preserved under pullback.)

We make the base change t 7→ ta and blowup (x, y, z, t) with weights

w = 1
n(1, na− 1, a, n) ∈ Z4 + Z · 1

n(1,−1, a, 0)

to obtain the desired birational morphism. (See §7.2.2 for background on

weighted blowups.) Let f : Ã→ A denote the blowup of the ambient space
A := 1

n(1,−1, a)× A1
t . Then f has exceptional divisor

E = P(1, na− 1, a, n)

with weighted homogeneous coordinates X,Y, Z, T corresponding to the orb-
ifold coordinates x, y, z, t at 0 ∈ A. We define the 3-fold X̃ to be the strict
transform of X ⊂ A under the map f and the morphism π : X̃ → X to be
the morphism induced by f . Observe that the equation

(xy = zn + ta) ⊂ A
of X is homogeneous with respect to the weight vector w. It follows that
the exceptional locus

W := π−1(P ) = E ∩ X̃
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of π is given by the same equation in the weighted projective space E. Note
that W = E|X̃ is a Q-Cartier divisor on X̃ because E is Q-Cartier on Ã. Now

consider the fiber X̃ = X̃0 of X̃ over 0 ∈ T = A1
t . Observe that the weight

w(t) of t for the blowup is equal to 1 (we made the base change above to

ensure this). It follows that the Cartier divisor X̃ = (t = 0) ⊂ X̃ is reduced,
equal to the sum X ′ + W of the strict transform of X and the exceptional
divisor W . It is easy to check in the charts for Ã that the singularities of X̃
are as described in the statement.

Finally, recalling that (P ∈ X) = (t = 0) ⊂ (P ∈ X ) is identified with
the cyclic quotient singularity (0 ∈ A2

u,v/
1
n2 (1, na− 1)) by

(u, v) 7→ (x, y, z) = (un, vn, uv),

a toric computation shows that the induced birational morphism p : X̃1 → X
is the blowup with weights 1

n2 (1, na− 1) with respect to u, v. Indeed, write

A0 := A3
x,y,z/

1
n(1,−1, a) = (t = 0) ⊂ A,

an affine toric variety. Let Ã0 denote the strict transform of A0 under f ,
then the induced morphism Ã0 → A0 is the weighted blowup of A0 with
weights 1

n(1, na − 1, a). The subvariety (P ∈ X) ⊂ (0 ∈ A0) is the closure
of the subtorus corresponding to the primitive sublattice

H := (u1 + u2 = nu3) ⊂ Z3 + Z · 1
n(1,−1, a)

of the lattice of one parameter subgroups of the big torus of A0. It follows
that the normalization X̃ν

1 of the strict transform X̃1 ⊂ Ã0 of X under f

is given by the toric surface with fan the intersection of the fan of Ã0 with
the subspace H ⊗ R. Computing this fan explicitly shows that X̃ν

1 is the
weighted blowup of X = (0 ∈ A2/ 1

n2 (1, na− 1)) with weights 1
n2 (1, na− 1).

Finally, working in charts for Ã0, we see that X̃1 is normal (in each chart it
is a quotient of a smooth hypersurface in A3).

The surface X̃1 is smooth along D′ because the toric chart for X̃1 meeting
D′ corresponds to a cone of the fan generated by a basis of the lattice. Thus
D′ is Cartier. Moreover D′ and C are given by the two toric boundary
divisors in this chart, which intersect transversely in a single smooth point.
So D′ · C = 1.

We remark that, since P ∈ X is a cyclic quotient singularity, its minimal
resolution X̂ → X has exceptional locus a nodal chain F = F1 + . . . + Fr
of smooth rational curves, such that the strict transforms (u = 0)′ and
(v = 0)′ of the coordinate axes intersect the end components F1 and Fr
respectively. Then X̃1 is obtained from X̂ by contracting the chain F1 +
· · · + Fr−1 of exceptional curves disjoint from (v = 0)′ to a cyclic quotient
singularity of type 1

na−1(a2,−1). (This can be verified using the description
of the weighted blowup in §7.2.2 and the toric construction of the minimal
resolution of a cyclic quotient surface singularity described in [F93, 2.6].) �
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4. Glueing

Let X/(0 ∈ T ) be a one parameter deformation of a projective normal
surface X with quotient singularities. Let P ∈ X be a Wahl singularity of
type 1

n2 (1, na − 1) such that the germ (P ∈ X )/(0 ∈ T ) is a Q-Gorenstein
smoothing of (P ∈ X). Let P1 = P, P2, . . . , Pr be the singularities of X and
Li the link of the singularity Pi ∈ X. Let Y denote a general fiber of X/T .
In this section we make the following assumptions:

(1) The map

(4.1) H2(X,Z)→
⊕

H1(Li,Z), α 7→ (α ∩ Li)

is surjective.
(2) We have H2(OY ) = 0 and H1(Y,Z) = 0.

Let (0 ∈ T ′) → (0 ∈ T ) and π : X̃ → X ′ be the base change and blowup
of Proposition 3.1.

Lemma 4.1. There exists a line bundle Ã on the strict transform X̃1 ⊂ X̃
of X such that the restriction of Ã to the exceptional curve C of p : X̃1 → X
has degree 1. Moreover, H i(OX̃1

) = 0 for i > 0.

Proof. By our assumptions H i(OY ) = 0 for i > 0. Since X has quotient sin-
gularities, we have H i(OX̃1

) = H i(OX) (quotient singularities are rational)

and H i(OX) = H i(OY ) (quotient singularities are Du Bois [DB81, 4.6,5.3]).
Thus H i(OX̃1

) = H i(OX) = 0 for i > 0. In particular, c1 : Cl(X) →
H2(X,Z) is an isomorphism (see §7.1), and the map 4.1 is identified with
the local-to-global map for the class group of X

Cl(X)→
⊕

Cl(Pi ∈ X).

By surjectivity of (4.1), there exists an effective Weil divisor D ⊂ X such
that D is given by the zero locus of the orbifold coordinate v at (P ∈ X)
for some identification

(P ∈ X) ' (0 ∈ C2
u,v/

1
n2 (1, na− 1)),

and D does not pass through the remaining singularities of X. Then D′ is
a Cartier divisor on X̃1 such that D′ · C = 1 by Proposition 3.1(5). So we
may take A = OX̃1

(D′). �

Proposition 4.2. Suppose G is an exceptional bundle of rank n on the
π-exceptional divisor W such that G|C ' OC(1)⊕n. Let Ẽ be the vector

bundle on the reducible surface X̃ obtained by glueing Ã⊕n on X̃1 and G on
X̃2 = W along OC(1)⊕n on C (see Lemma 7.3). Then Ẽ is an exceptional

vector bundle on X̃.
Let Ẽ denote the vector bundle on X̃ obtained by deforming Ẽ. Let E :=

(π∗Ẽ)∨∨ be the reflexive hull of the pushforward of Ẽ to X ′. Then E|X ′t is

an exceptional vector bundle on X ′t for t 6= 0 and E := E|X is a torsion-free
sheaf on X.
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Let A := (p∗Ã)∨∨ be the reflexive hull of the pushforward of Ã to X.
Then the reflexive hull E∨∨ of E equals A⊕n and E∨∨/E is a torsion sheaf
supported at P ∈ X.

Remark 4.3. We show in Proposition 5.1 that such bundles G exist by in-
duction on a. The induction step uses Proposition 4.2.

Proof. Since X̃ = X̃1 ∪ X̃2 has orbifold normal crossing singularities, the
curve C is the scheme theoretic intersection of X̃1 and X̃2. So, fixing iden-
tifications Ã⊕n|C ' OC(1)⊕n ' G|C , we can construct a vector bundle Ẽ

on X̃ such that Ẽ|X̃1
= Ã⊕n and Ẽ|X̃2

= G, see Lemma 7.3. (Note that the

isomorphism type of Ẽ does not depend on the choice of the identifications
because Aut(Ã⊕n) = Aut(OC(1)⊕n) = GL(n,C).)

We show that Ẽ is exceptional. Consider the exact sequence

0→ End Ẽ → End Ẽ|X̃1
⊕ End Ẽ|X̃2

→ End Ẽ|C → 0,

which is equal to

0→ End Ẽ → On×n
X̃1
⊕ EndG→ On×nC → 0.

The curve C is smooth and rational, so H1(OC) = 0, and H i(OX̃1
) = 0 for

i > 0 by Lemma 4.1. We deduce that H i(End Ẽ) = H i(EndG) for all i.

Hence Ẽ is exceptional because G is exceptional.
The vector bundle Ẽ deforms uniquely to a vector bundle Ẽ over X̃

because Ẽ is exceptional. (Indeed, let M/(0 ∈ T ) denote the moduli

space of simple sheaves on X̃/(0 ∈ T ) [AK80, 7.4]. Then the vanishing

Ext1(Ẽ, Ẽ) = Ext2(Ẽ, Ẽ) = 0 implies that M/(0 ∈ T ) is smooth of rela-

tive dimension 0 at [Ẽ] ∈ M0 (see e.g. [H10, 7.1]).) The restrictions of Ẽ
to the fibers of X̃/T are exceptional by upper semicontinuity of cohomol-

ogy. (For t in some neighborhood of 0 ∈ T we have H0(End Ẽt) = C and

dim Exti(Ẽt, Ẽt) = dimH i(End Ẽt) = 0 for i > 0 by [H77, III.12.8]).)
Note that E := E|X is torsion-free because E is reflexive. Indeed, E

satisfies Serre’s condition S2 and X = (t = 0) ⊂ X is a Cartier divisor. So
the restriction E = E|X satisfies S1, that is, E is torsion-free.

By construction E|X\{P} = A⊕n|X\{P}, so E∨∨ = A⊕n and E∨∨/E is
supported at P . �

Proposition 4.4. Suppose H is a line bundle on X/T which is ample on
fibers. Then for t 6= 0 the exceptional vector bundle E|X ′t on X ′t constructed

in Proposition 4.2 is slope stable with respect to H|X ′t .

Proof. The exceptional divisor W = X̃2 of π is Q-Cartier by Proposition 3.1.
Fix M ∈ N such that MW is Cartier. Let H′ be the pullback of H to X ′,
and define

H̃ := π∗H′⊗N ⊗OX̃ (−MW )

for N � 0, Then H̃ is a line bundle on X̃/T ′ which is ample on fibers, and
its restriction to X ′t for t 6= 0 coincides with the restriction of H⊗N . (Indeed,
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since X̃ has normal crossing singularities (xy = 0) ⊂ A3
x,y,z generically along

C, the one parameter deformation X̃ has singularities of type

(xy = u · tl) ⊂ A3
x,y,z × A1

t

generically along C, where u is a unit and l ∈ N. Thus−W |W = X ′|W = 1
lC.

So −W is π-ample on X̃ because C ∈ |OW (n)| is ample on W . The line

bundle H′ is relatively ample on X ′/T ′ by assumption. It follows that H̃
is relatively ample on X̃/T ′ (see e.g. [KM98, 1.45]).) In what follows we

write µ(F ) for the slope of a sheaf F on a surface S ⊂ X̃ defined using the

polarization on S given by the restriction of H̃, that is,

µ(F ) = degF/ rkF := (c1(F ) · H̃|S)/ rk(F )

Suppose E|X ′t is not slope stable with respect to H|X ′t for t 6= 0. Then, by

the argument for openness of stability [HL97, 2.3.1], after a finite surjective
base change (which we suppress in our notation), there is a coherent sheaf R
on X ′ and a surjection Ẽ → R such thatR is flat over T ′, 0 < rk(R) < rk(Ẽ),

and µ(R|X ′t ) ≤ µ(Ẽ |X ′t ) for all t ∈ T ′. (Note that, by flatness of R over T ′,

R|X̃ is a sheaf of constant rank on the reducible surface X̃. Thus µ(R|X̃) is
well-defined.)

Let Ẽ → R and Ẽi → Ri denote the restrictions of Ẽ → R to X̃ and
X̃i for i = 1, 2. Recall that Ẽ1 is the direct sum of n copies of the line
bundle Ã and Ẽ2 is the exceptional vector bundle G on W . In particular Ẽ1

is slope semistable, and Ẽ2 is slope stable by Proposition 5.6 below. Thus
µ(R1) ≥ µ(Ẽ1) and µ(R2) > µ(Ẽ2). We deduce that µ(R) =

∑
µ(Ri) >

µ(Ẽ) =
∑
µ(Ẽi), a contradiction. �

5. Localized exceptional bundles

Proposition 5.1. Let n, a be positive integers such that a < n and (a, n) =
1. Write

W = Wn,a := (XY = Zn + T a) ⊂ P(1, na− 1, a, n)

Let C1 and C2 be the smooth rational curves on W defined by C1 = (Z = 0)
and C2 = (T = 0). Then there exist exceptional vector bundles F1 and F2

on W of ranks a and n such that for each j = 1, 2 we have

(1) H i(F∨j ) = 0 for all i,

(2) H i(Fj) = 0 for i > 0,
(3) Fj is generated by global sections, and

(4) Fj |Cj ' OCj (1)⊕ rkFj .

(Here OCj (1) denotes the line bundle of degree 1 on the smooth rational
curve Cj.)

Construction 5.2. The proof of Proposition 5.1 uses the following degener-
ation of W . Consider the one parameter family of normal surfaces

X = (XY = tZn + T a) ⊂ P(1, na− 1, a, n)× A1
t .
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Note that Xt 'W for t 6= 0. The special fiber X := X0 is isomorphic to the
weighted projective plane P(1, na− 1, a2) via the morphism

P(1, na− 1, a2)→ X = (XY = T a) ⊂ P(1, na− 1, a, n),

(U, V,W ) 7→ (X,Y, Z, T ) = (Ua, V a,W,UV ).

The surface X has two singular points P = (0: 0 : 1) and Q = (0: 1 : 0).
The point P is a Wahl singularity of type 1

a2
(1, ab− 1) where b = n mod a,

and the germ (P ∈ X )/(0 ∈ A1
t ) is a Q-Gorenstein smoothing of (P ∈ X).

The point Q is a cyclic quotient singularity of type 1
na−1(1, a2) and the

deformation X/(0 ∈ A1
t ) is locally trivial near Q.

Proof of Proposition 5.1. We first construct F2 given F1. The vector bundle
F1 is globally generated, that is, the natural morphism

(5.1) H0(F1)⊗OW → F1

is surjective. We define F2 as the dual of the kernel of (5.1). Thus F2 is a
vector bundle such that rk(F2) = h0(F1)− rk(F1) and c1(F2) = c1(F1). The
bundle F2 is exceptional and H i(F∨2 ) = 0 for all i by [G90, §2.4]. Indeed,
in the terminology of op. cit., the pair (OW , F1) is an exceptional pair, and
(F∨2 ,OW ) is its left mutation. Moreover, the exact sequence

0→ F∨1 → H0(F1)∗ ⊗OW → F2 → 0

shows that F2 is globally generated and H i(F2) = 0 for i > 0.
The surface W has only quotient singularities and satisfies H1(OW ) =

H2(OW ) = 0, so the class group Cl(W ) is identified with H2(W,Z), see
§7.1. By Lemma 5.4 the homology group H2(W,Z) is isomorphic to Z,
generated by the restriction h of the positive generator hP = c1(OP(1))
of H4(P,Z), where P = P(1, na − 1, a, n) denotes the ambient weighted
projective space. (See §7.2.1 for background on weighted projective spaces.)
Note that h2 = 1/(na − 1) (because h2 = h2

P · W = (na)h3
P and h3

P =
1/((na−1)an)). Let H = (X = 0) ⊂W , an effective Weil divisor with class
h. Now C1 = (Z = 0) ∼ aH and F1|C1 ' OC1(1)⊕a, thus c1(F1) · ah = a
and so c1(F1) = (na − 1)h. Since F1 is an exceptional bundle of rank a we
have

c2(F1) =
a− 1

2a
(c1(F1)2 + a+ 1),

see Lemma 5.3 below. The canonical class KW of W is given by the adjunc-
tion formula

KW = (KP +W )|W ∼ −(a+ n)H.

Now the Riemann–Roch formula (see Lemma 7.1) gives

h0(F1) = χ(F1) = aχ(OW ) +
1

2
c1(F1)(c1(F1)−KW )− c2(F1) = a+ n.

Thus F2 is a vector bundle of rank n.
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It remains to show that F2|C2 ' OC2(1)⊕n. The bundle F2|C2 on C2 ' P1

has rank n and degree

c1(F2) · C2 = c1(F1) · nh = (na− 1)nh2 = n.

So it suffices to show that F2|C2 is rigid, that is, H1(EndF2|C2) = 0. Con-
sider the exact sequence

0→ EndF2(−C2)→ EndF2 → EndF2|C2 → 0.

We have H1(EndF2) = 0 and

H2(EndF2(−C2)) = H0(EndF2(KW + C2))∗ = H0(EndF2(−aH))∗ = 0

using Serre duality (see §7.1), KW + C2 ∼ −aH < 0, and EndF2 = C. So
H1(EndF2|C2) = 0 as required.

We now prove the existence of F1 by induction on a. If a = 1 then
W = P(1, n−1, 1) and we can take F1 = OW (n−1). (Indeed, the vanishings
(1) and (2) follow from the description of the cohomology of the sheaves
O(n) on weighted projective spaces [D82, 1.4.1]. The line bundle OW (n−1)
is globally generated by Xn−1, Y, Zn−1. The restriction OW (n − 1)|C has
degree (n− 1)h · h = 1, thus OW (n− 1)|C ' OC(1).)

Now suppose a > 1. Consider the degeneration X/(0 ∈ T ) of W described
in Construction 5.2. Write n = ka+b, 0 < b < a. The point P = (0: 0 : 1) ∈
X = P(1, na − 1, a2) is a Wahl singularity of type 1

a2
(1, ab − 1), and the

germ (P ∈ X )/(0 ∈ T ) is a Q-Gorenstein smoothing of (P ∈ X). Let

(0 ∈ T ′) → (0 ∈ T ) and π : X̃ → X ′ be the base change and blowup of

Proposition 3.1. The exceptional divisor of π is X̃2 = Wa,b. By induction
and the construction of F2 from F1 above, there exists an exceptional vector
bundle G on X̃2 of rank a such that H i(G∨) = 0 for all i, H i(G) = 0 for

i > 0, G is globally generated, and G|C ' OC(1)⊕a, where C = X̃1 ∩ X̃2 is

the double curve of X̃ = X̃0.
The surface X = P(1, na − 1, a2) is the toric variety associated to a free

abelian group N and a fan Σ in N ⊗Z R as follows. The group N has rank
2 and is generated by vectors v0, v1, v2 satisfying the relation

v0 + (na− 1)v1 + a2v2 = 0.

The fan Σ is the complete fan with rays generated by v0, v1, v2. The bi-
rational morphism p : X̃1 → X is the weighted blowup of the point P =
(0: 0 : 1) ∈ X with weights 1

a2
(1, ab − 1) with respect to the orbifold coor-

dinates u = U/W 1/a2 , v = V/W (na−1)/a2 . The morphism p corresponds to

the refinement Σ̃ of the fan Σ obtained by adding the ray generated by

w := 1
a2

(v0 + (ab− 1)v1) ∈ N.

Let D be the divisor (V = 0) ⊂ X = P(1, na−1, a2) and D′ ⊂ X̃1 its strict

transform. Note that D′ ⊂ X̃1 is the toric boundary divisor corresponding
to the ray R≥0 · v1 of Σ̃. The divisor D′ is Cartier and D′ · C = 1 by
Proposition 3.1(5). By Proposition 4.2 there is an exceptional vector bundle
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Ẽ on X̃ obtained by glueing OX̃1
(D′)⊕a on X̃1 and G on X̃2 along OC(1)⊕a

on C, and Ẽ deforms to an exceptional bundle F1 on the general fiber W
of X̃/T . It remains to show that F1 satisfies the properties (1)–(4) in the
statement.

(1,2) It suffices to verify the corresponding vanishings for Ẽ. We have the

exact sequence of sheaves on X̃

0→ Ẽ∨ → OX̃1
(−D′)⊕a ⊕G∨ → OC(−1)⊕a → 0.

Now H i(G∨) = 0 for all i by assumption, H i(OC(−1)) = 0 for all i, and we
find H i(OX̃1

(−D′)) = 0 for all i using the exact sequence

0→ OX̃1
(−D′)→ OX̃1

→ OD′ → 0.

(Note that the toric boundary divisor D′ is a smooth rational curve.) Hence

H i(Ẽ∨) = 0 for all i. Similarly, for (2) we consider the exact sequence

(5.2) 0→ Ẽ → OX̃1
(D′)⊕a ⊕G→ OC(1)⊕a → 0.

A toric calculation shows that (D′)2 = k > 0, where n = ka + b as above.
(Indeed, with notation as above, we compute v2 + w = −kv1, so (D′)2 = k
by [F93], p. 44.) The exact sequence

0→ OX̃1
→ OX̃1

(D′)→ OD′(k)→ 0

shows H i(OX̃1
(D′)) = 0 for i > 0. The exact sequences

0→ OX̃1
(−C)→ OX̃1

(D′ − C)→ OD′(k − 1)→ 0

and
0→ OX̃1

(−C)→ OX̃1
→ OC → 0

show that H1(OX̃1
(D′−C)) = 0, hence the restriction map H0(OX̃1

(D′))→
H0(OC(1)) is surjective. We deduce that H i(Ẽ) = 0 for i > 0.

(3) Global sections of Ẽ lift to global sections of Ẽ because H1(Ẽ) =

0 [H77, III.12.11]. So it suffices to prove that Ẽ is globally generated.
The bundle G is globally generated by assumption and the restriction map
H0(OX̃1

(D′))→ H0(OC(1)) is surjective as proved above. It follows that Ẽ

is globally generated along X̃2. (Here, given a coherent sheaf F on a scheme
X and a closed subscheme Y ⊂ X, we say F is globally generated along Y if
F is generated by H0(X,F ) along Y .)

Let S denote the support of the cokernel of the natural map

H0(Ẽ)⊗OX̃1
→ Ẽ|X̃1

.

Thus Ẽ is globally generated iff S = ∅. We first show that S is a union of
toric strata of the toric surface X̃1. The action σ of the big torus H ' (C∗)2

on X̃1 restricts to an action on C given by

C = (T = 0) ⊂ X̃2 = (XY = Za + T b) ⊂ P(1, ab− 1, b, a)

H 3 h : (X,Y, Z) 7→ (X,χ(h)aY, χ(h)Z)
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for some character χ of H. Consider the action σ′ of H on X̃1 given by
σ′(h, x) = σ(hb, x). Then σ′ extends to an action of H on X̃ defined on X̃2

by

h : (X,Y, Z, T ) 7→ (X,χ(h)abY, χ(h)bZ, χ(h)aT ).

Since Ẽ is exceptional, it has no nontrivial deformations, so h∗Ẽ is isomor-
phic to Ẽ for all h ∈ H. It follows that S ⊂ X̃1 is a union of toric strata.
Now Ẽ is globally generated along C, so it suffices to show that Ẽ is globally
generated along the toric boundary divisor B ⊂ X̃1 disjoint from C. Note
that B maps isomorphically to (W = 0) ⊂ X under p.

The divisor D′ intersects each of B and C transversely in a smooth
point of X̃1. In particular, Ẽ|B ' OB(1)⊕a. Let f : X̃ ′1 → X̃1 be the
blowup of k distinct interior points of D′ so that the strict transform D′′

satisfies D′′ = f∗D′ −
∑k

i=1Ei where the Ei are the exceptional curves.

Then (D′′)2 = 0 and so D′′ defines a ruling of X̃ ′1 with sections B and C.
So H0(OX̃′1(D′′)) ⊂ H0(OX̃1

(D′)) maps isomorphically to H0(OB(1)) and

H0(OC(1)). Since G = Ẽ|X̃2
is globally generated along C we deduce that

Ẽ is globally generated along B.
(4) The divisor B := (Z = 0) ⊂ X/(0 ∈ T ) is a P1-bundle over the base

with fiber C2 ⊂ W = Xt for t 6= 0 and B = (W = 0) ⊂ X for t = 0. As

noted above we have Ẽ|B ' OB(1)⊕a, so also F1|C2 ' OC2(1)⊕a. �

Lemma 5.3. Let W be a projective normal surface with only quotient sin-
gularities and F an exceptional vector bundle of rank n on W . Then

c2(F ) =
n− 1

2n
(c1(F )2 + n+ 1).

Proof. By the Riemann–Roch formula for End(F ) on W (see Lemma 7.1)
we have

(5.3) χ(EndF ) = n2χ(OW ) + (n− 1)c1(F )2 − 2nc2(F ).

The locally free sheaf F is exceptional, that is, H0(EndF ) = C andH i(EndF ) =
0 for i > 0. The sheaf OW is a direct summand of EndF , so we also have
H i(OW ) = 0 for i > 0 . Thus χ(EndF ) = χ(OW ) = 1. Now solving (5.3)
for c2(F ) yields the formula in the statement. �

Lemma 5.4. Let W = (XY = Zn+T a) ⊂ P(1, na−1, a, n). Then H2(W,Z)
is isomorphic to Z, generated by the restriction of the positive generator h :=
c1(OP(1)) ∈ H4(P,Z) of the homology of the ambient weighted projective
space P = P(1, na− 1, a, n).

Proof. By Construction 5.2 the surface W is obtained from the weighted
projective plane X = P(1, na−1, a2) ⊂ P by smoothing the Wahl singularity
P ∈ X of type 1

a2
(1, ab−1). We have h|X = al, where l denotes the positive

generator of H2(X,Z). Now by Lemma 5.5 below we deduce that H2(W,Z)
is generated by h|W as required. �
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Lemma 5.5. Let X be a projective normal surface and P ∈ X a Wahl
singularity of type 1

n2 (1, na − 1). Let L denote the link of P ∈ X. Assume
that H2(X,Z)→ H1(L,Z) is surjective. Let X/(0 ∈ T ) be a deformation of
X over a smooth curve germ such that the germ (P ∈ X )/(0 ∈ T ) is a Q-
Gorenstein smoothing of (P ∈ X) and the deformation X/T is locally trivial
elsewhere. Let Y denote a general fiber of X/T . Then the specialization map

sp: H2(Y,Z)→ H2(X,Z)

is injective with cokernel isomorphic to Z/nZ.

Proof. Let B ⊂ X be the intersection of X with a small closed ball about
P in some embedding, and Xo the complement of the interior of B. Then
B is contractible and has boundary L, the link of P ∈ X. Let M ⊂ Y
be the Milnor fiber of the smoothing of P ∈ X. Then the Mayer–Vietoris
sequences for Y = Xo ∪M and X = Xo ∪ B give a commutative diagram
with exact rows

0 −−−−→ H2(Xo) −−−−→ H2(Y ) −−−−→ H1(L) −−−−→ H1(Xo)⊕H1(M)∥∥∥ y ∥∥∥ y
0 −−−−→ H2(Xo) −−−−→ H2(X) −−−−→ H1(L) −−−−→ H1(Xo)

using H2(L) = H2(M) = 0 and contractibility of B. Now H2(X) → H1(L)
is surjective by assumption and H1(L)→ H1(M) is a surjection of the form
Z/n2Z → Z/nZ. It follows that H2(Y ) → H2(X) is injective with cokernel
H1(M) isomorphic to Z/nZ as claimed. �

Proposition 5.6. Let W = (XY = Zn + T a) ⊂ P(1, na − 1, a, n) and
C = (T = 0) ⊂W , a smooth rational curve. Let G be an exceptional vector
bundle on W such that G|C is semistable. Then G is slope stable.

Proof. Let A be an ample line bundle on W . For a coherent sheaf F on W
we define the slope µ(F ) = (c1(F ) ·A)/ rk(F ). (Note that the choice of A is
irrelevant because b2(W ) = 1, see Lemma 5.4.) For a coherent sheaf F on an
irreducible projective curve Γ, we define the slope µ(F ) = deg(F )/ rk(F ).

Suppose for a contradiction that G is not slope stable. So there is a
surjection G → R where R is a torsion-free sheaf such that µ(R) ≤ µ(G)
and rk(R) < rk(G). Let S := R∨∨ be the reflexive hull of R. We first show
that S is locally free. Consider the smooth rational curve C = (T = 0) ⊂W .
Write [C] = αc1(A), some α ∈ Q, α > 0. Then µ(G|C) = αµ(G). For F
a coherent sheaf on W and Γ ⊂ W an irreducible curve, let F̄Γ denote the
quotient of F |Γ by its torsion subsheaf. We have a surjection G|C → R̄C , and
an injection R̄C → S̄C with torsion cokernel (because the inclusion R ⊂ S
is an isomorphism outside a finite set). In particular µ(R̄C) ≤ µ(S̄C). By
Lemma 5.7 below,

µ(S̄C) ≤ (c1(S) · [C])/ rk(S) = αµ(S),
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with equality iff S is locally free. Combining, we find

µ(R̄C) ≤ µ(S̄C) ≤ αµ(S) = αµ(R) ≤ αµ(G) = µ(G|C)

with equality only if S is locally free. But µ(G|C) ≤ µ(R̄C) by semistability
of G|C , so S is locally free as claimed.

Let D ∈ | −KW | be a general member of the anticanonical linear system
on W . Then D is an irreducible curve of arithmetic genus 1. (Indeed, D is
irreducible and reduced by explicit calculation, and we have

2pa(D)− 2 = (KW +D) ·D = 0

by the adjunction formula (which is valid for the irreducible curve D on the
singular surface W because KW + D is Cartier [K92, 16.4.3]).) We show
that G|D is slope stable. Consider the exact sequence

0→ EndG(−D)→ EndG→ EndG|D → 0.

We have H i(EndG) = 0 for i 6= 0 because G is exceptional, and

H i(EndG(−D)) = H i(EndG(KW )) = H2−i(EndG)∗ = 0

for i 6= 2 by Serre duality. Thus H0(EndG|D) = H0(EndG) = C, that is,
G|D is simple. Now by [BK06, 4.13] G|D is slope stable.

Finally, consider the surjection G|D → R̄D. Recall that the reflexive hull
S of R is locally free. Write [D] = βc1(A), where β ∈ Q, β > 0. Then

µ(R̄D) ≤ µ(S|D) = βµ(S) = βµ(R) ≤ βµ(G) = µ(G|D).

This contradicts the stability of G|D. �

Lemma 5.7. Let F be a reflexive sheaf on W . Let F̄C denote the quotient
of the restriction F |C by its torsion subsheaf. Then

deg(F̄C) ≤ c1(F ) · [C],

with equality iff F is locally free.

Proof. Recall that the surface W has a unique singular point

(Q ∈W ) ' (0 ∈ C2
z,t/

1
na−1(a, n)),

a cyclic quotient singularity with group of order r := na− 1. Moreover the
curve C is a smooth rational curve passing through Q, étale locally at Q
given by (t = 0) ⊂ (Q ∈ W ). The sheaf F is locally free away from Q
(because a reflexive sheaf on a smooth surface is locally free, see e.g. [H80,
1.4]). Let f : (P ∈ V )→ (Q ∈ U) be a local smooth Galois cover of an étale
neighbourhood U of Q ∈ W with group G = Z/rZ. Let FV = (f∗F )∨∨

be the reflexive hull of the pullback of F . Then FV is locally free and
F |U = (f∗FV )G. (Indeed F |U and (f∗FV )G coincide away from Q (where f
is étale), so it suffices to show that (f∗FV )G is reflexive. The sheaf f∗FV is
the pushforward of a reflexive sheaf by a finite surjective morphism, so is
reflexive [H80, 1.7]. The subsheaf (f∗FV )G ⊂ f∗FV of G-invariant sections



EXCEPTIONAL BUNDLES ASSOCIATED TO DEGENERATIONS OF SURFACES 17

is a direct summand, hence also reflexive.) We trivialize FV and diagonalize
the G-action to obtain

FV ' ⊕r−1
i=0O

⊕mi
V

where the mi ∈ N ∪ {0} and the generator g = 1 ∈ G = Z/rZ acts on the
components of the ith summand by

g · f = g(f) · ζ−i, ζ = exp(2πi/r).

Let N be an étale neighbourhood of C in W such that there exists an
effective Weil divisor D ⊂ N given étale locally at Q by (z = 0) ⊂ (Q ∈W )
and otherwise disjoint from C. Then, replacing U by its restriction to N
and recalling that g(z) = ζz, we find

F |U ' ⊕r−1
i=0OU (−iD)⊕mi .

Thus, replacing N by (N \D)∪U , there is a locally free sheaf F ′ on N and
a short exact sequence

0→ F |N → F ′ → ⊕r−1
i=1O

⊕mi
iD → 0.

In particular, since D · C = 1
r ,

c1(F ) · [C] = c1(F ′) · [C]−
r−1∑
i=1

mi ·
i

r
.

For each 0 < i < r the cokernel of the map ON (−iD)|C → OC is the
skyscraper sheaf k(Q) at Q with stalk C (by direct computation). Thus the
cokernel of the map F |C → F ′|C is isomorphic to ⊕r−1

i=1k(Q)⊕mi , and so

deg(F̄C) = deg(F ′|C)−
r−1∑
i=1

mi.

We have c1(F ′) · [C] = deg(F ′|C) because F ′ is locally free. Combining, we
find

deg(F̄C) = c1(F ) · [C]−
r−1∑
i=1

mi ·
(

1− i

r

)
≤ c1(F ) · [C]

with equality iff mi = 0 for 0 < i < r, equivalently, F is locally free. �

Proof of Theorem 1.1. By Propositions 4.2 and 5.1, to establish the exis-
tence of the sheaf E satisfying 1.1(2)(a,b) it suffices to show that the hy-
potheses of Theorem 1.1 imply the hypothesis (1) of §4, namely, that the
map

(5.4) H2(X,Z)→ H1(L,Z)

is surjective, where L is the link of the singularity.
Let B denote the intersection of X with a small closed ball centered

at the singularity P ∈ X in some embedding, M the Milnor fiber of the
smoothing, and Xo ⊂ X the complement of the interior of B. As in the
proof of Lemma 5.5, consider the Mayer-Vietoris sequences for Y = Xo∪M
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and X = Xo ∪B. Let IX and IY denote the image of H2(X) and H2(Y ) in
H1(L). We obtain a commutative diagram with exact rows

0 −−−−→ H1(L)/IY −−−−→ H1(Xo)⊕H1(M) −−−−→ H1(Y ) −−−−→ 0y y y
0 −−−−→ H1(L)/IX −−−−→ H1(Xo) −−−−→ H1(X) −−−−→ 0

By the snake lemma we obtain an exact sequence

0→ IX/IY → H1(M)→ H1(Y )→ H1(X)→ 0.

Now H1(M) ' Z/nZ and H1(Y ) is finite of order coprime to n by assump-
tion. Hence IX/IY = H1(M) and H1(Y ) = H1(X). Now consider the p-part
of the exact sequence

H1(L)→ H1(Xo)⊕H1(M)→ H1(Y )→ 0

for p a prime. If p divides n, then since H1(L) ' Z/n2Z, H1(M) ' Z/nZ,
and H1(Y )(p) = 0, we find that H1(Xo)(p) = 0. (Here for a Z-module A and
a prime p ∈ N we write A(p) for the localization of A at the prime ideal (p).)
If p does not divide n, then H1(Xo)(p) = H1(Y )(p). Thus H1(Xo) = H1(Y ).
Combining, H1(Xo) = H1(X). Now the Mayer–Vietoris sequence for X =
Xo ∪B shows that H2(X)→ H1(L) is surjective as required.

The statement 1.1(1) holds by Lemma 5.5 and the surjectivity of (5.4)
proved above. The stability statement is given by Proposition 4.4.

It remains to establish the stated properties of the Chern classes of F . We
have c1(E) = nc1(A) ∈ H2(X,Z) because E∨∨ = A⊕n and E is torsion-free.
Moreover c1(F ) = c1(E) ∈ H2(Y,Z) ⊂ H2(X,Z). (Indeed, working locally
analytically over (0 ∈ T ), fix an embedding (P ∈ X ) ⊂ ((0, 0) ∈ CN×T ), let
B be a small closed ball about 0 in CN , and define X o = X \B × T . Then
X o/T is a fibration of smooth manifolds with boundary, with special fiber
Xo and general fibre Y o ⊂ Y the complement of the interior of the Milnor
fiber. The specialization map H2(Y,Z)→ H2(X,Z) is the composition

H2(Y,Z) = H2(Y,Z)→ H2(Y o,Z) = H2(Xo,Z) = H2(X,Z),

where we have used Poincaré duality (see §7.1) and the identification of the
cohomology of the fibers of X o/T . Since the class

c1(E|X o
t
) ∈ H2(X ot ,Z) = H2(Xo,Z)

is independent of t ∈ T , it follows that c1(F ) maps to c1(E) under the spe-
cialization map.) The formula for c2(F ) holds because F is exceptional, see
Lemma 5.3. Since c1(F ) = nc1(A) and KY = KX in H2(Y,Z) ⊂ H2(X,Z)
we can compute c1(F ) · KY modulo n by a local computation at the sin-
gular point P ∈ X. Identify (P ∈ X) with (0 ∈ A2

u,v/
1
n2 (1, na − 1)). By

construction c1(A) is locally represented by the class of the Weil divisor

D := (v = 0) (because the strict transform D′ of this divisor in X̃1 is
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Cartier and satisfies D′ · C = 1). The canonical divisor KX is locally rep-
resented by −(uv = 0) ∼ −na(u = 0). Thus the local intersection number
(nc1(A) ·KX)P is given by

(nc1(A) ·KX)P = n(v = 0) · (−na(u = 0)) = −n2a/n2 = −a mod n.

It follows that c1(A) = c1(F )/n generates H2(X,Z)/H2(Y,Z) ' Z/nZ be-
cause (a, n) = 1. �

6. Example: The projective plane

We analyze our construction in the case Y = P2. We use the classifi-
cation of exceptional bundles on Y [DLP85],[R89] and the classification of
degenerations Y  X [HP10] to establish a bijective correspondence, see
Theorem 6.4.

Theorem 6.1. [HP10, 1.2] Let X be a normal surface with quotient singu-
larities which admits a smoothing to the projective plane. Then X is one of
the following:

(1) A weighted projective plane P(a2, b2, c2), where (a, b, c) is a solution
of the Markov equation

(6.1) a2 + b2 + c2 = 3abc.

(2) A Q-Gorenstein deformation of one of the toric surfaces in (1), de-
termined by specifying a subset of the singularities to be smoothed.

The solutions of the Markov equation are easily described as follows. The
triple (1, 1, 1) is a solution, and all solutions are obtained from (1, 1, 1) by
a sequence of mutations given by choosing one of the variables (c, say),
holding the remaining variables fixed, and replacing the chosen variable by
the other solution of the quadratic equation (6.1):

(6.2) (a, b, c) 7→ (a, b, c′ = 3ab− c).
We can define a graph G with vertices labelled by solutions of the Markov
equation and edges corresponding to pairs of solutions related by a single
mutation. Then G is an infinite tree such that every vertex has degree 3.
See [C57, II.3].

The surface P = P(a2, b2, c2) has cyclic quotient singularities of types
1
a2

(b2, c2), 1
b2

(c2, a2), 1
c2

(a2, b2). Using the Markov equation one sees that
these are Wahl singularities (note that a, b, c are coprime and not divisible
by 3 by the inductive description of the solutions of the Markov equation
above). Moreover there are no locally trivial deformations and no local-to-
global obstructions because H1(TP) = H2(TP) = 0. (Here for a variety X,
possibly singular, we define the tangent sheaf TX := Hom(ΩX ,OX) as the
dual of the sheaf of Kähler differentials, cf. [H77, II.8].) Thus the versal Q-
Gorenstein deformation space of P maps isomorphically to the product of the
versal Q-Gorenstein deformation spaces of its singularities (see Lemma 7.2),
which are smooth of dimension 1 (see §2).
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Proposition 6.2. Let X be a normal surface with quotient singularities
which admits a smoothing to the projective plane. Then X is uniquely de-
termined up to isomorphism by its singularities.

Proof. If X is smooth then necessarily X is isomorphic to P2. Now sup-
pose X has r singularities with indices a1, . . . , ar. By Theorem 6.1 we
have r ≤ 3 and the surface X is obtained from a weighted projective plane
P = P(a2

1, a
2
2, a

2
3) by smoothing the singularity of index ai for each i > r,

where (a1, a2, a3) is a solution of the Markov equation. If r = 3 then X = P
and clearly X is determined by its singularities. (Indeed, if w0, w1, w2 ∈ N
are pairwise coprime then the weighted projective plane P(w0, w1, w2) has
cyclic quotient singularities of types 1

w0
(w1, w2), 1

w1
(w2, w0), and 1

w2
(w0, w1).

Thus each weight wi different from 1 corresponds to a singular point of X,
and may be recovered as the order of the fundamental group of the link of
the singular point.) If r = 2 then there are exactly two possibilities for a3,
related by the mutation a′3 = 3a1a2 − a3. By Example 6.3 below these two
choices yield isomorphic surfaces.

Finally suppose r = 1. Let 1
n2 (1, na− 1) be the isomorphism type of the

singularity P ∈ X. Thus n = a1 and 1
n2 (1, na−1) ' 1

a21
(a2

2, a
2
3). Equivalently,

using the Markov equation,

(6.3) ± a = ((a2
2 + a2

3)/a1) · (a2
2)−1 = (3a2a3− a1) · (a2

2)−1 = 3a−1
2 a3 mod n

(the sign ambiguity comes from interchanging the orbifold coordinates). By
inductively replacing (a1, a2, a3) by a mutation at a2 or a3 (and appeal-
ing to Example 6.3 again), we may assume that a1 = max(a1, a2, a3), cf.
[C57, p. 27]. Now by [R89, 3.2] (a1, a2, a3) is uniquely determined by n and
±a mod n. �

Example 6.3. Here we describe a two parameter family of surfaces which
“connects” the weighted projective planes P := P(a2, b2, c2), P′ := P(a2, b2, c′2)
associated to two solutions of the Markov equation related by a single mu-
tation. The family is given by

X = (XY = sZc
′
+ tT c) ⊂ P(a2, b2, c, c′)× A2

s,t.

(Note that cc′ = a2 + b2 by (6.2).) The special fiber X := X0 is the union
of two weighted projective planes P(a2, c, c′), P(b2, c, c′) glued along the co-
ordinate lines of degree a2 and b2. It has two Wahl singularities of indices
a and b and two orbifold normal crossing singularities of indices c and c′.
The fibers Xs,t for s = 0, t 6= 0 are isomorphic to P = P(a2, b2, c2), with the
embedding being the c-uple embedding

P(a2, b2, c2)→ (XY = T c) ⊂ P(a2, b2, c, c′)

(U, V,W ) 7→ (X,Y, Z, T ) = (U c, V c,W,UV ).

Similarly, the fibers Xs,t for s 6= 0, t = 0 are isomorphic to P′ = P(a2, b2, c′2).
The fibers Xs,t for s 6= 0, t 6= 0 are obtained from P or P′ by smoothing the
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singularity of index c or c′ respectively. Moreover in each case the smoothing
of the singularity is a versal Q-Gorenstein deformation (cf. §2).

Theorem 6.4. Let S denote the set of isomorphism classes of normal sur-
faces X such that X has a unique singular point P ∈ X which is a quotient
singularity and X admits a smoothing to P2. (Then (P ∈ X) is a Wahl
singularity and the smoothing is necessarily Q-Gorenstein.)

Let T denote the set of isomorphism classes of exceptional vector bundles
F on P2 of rank greater than 1 modulo the operations F 7→ F∨ and F 7→
F ⊗ L for L a line bundle on P2.

Then Theorem 1.1 defines a bijection of sets

Φ: S → T, [X] 7→ [F ].

Proof. Let X be a surface as in the statement. The singularity (P ∈ X) is
a Wahl singularity by Theorem 6.1. Let (P ∈ X) be of type 1

n2 (1, na− 1).

The smoothing of X to P2 is automatically Q-Gorenstein by [M91], §1,
Corollary 5. Let F denote an associated exceptional bundle F on Y = P2

given by Theorem 1.1. Then rk(F ) = n and c1(F ) ·KY = ±a mod n. Let h
denote the hyperplane class on P2. Then

(6.4) 3(c1(F ) · h) = ±a mod n,

and the slope µ(F ) := (c1(F ) ·h)/ rk(F ) ∈ Q is uniquely determined modulo
translation by Z and multiplication by ±1. An exceptional vector bundle
on P2 is uniquely determined by its slope [DLP85, 4.3]. It follows that F is
uniquely determined up to F 7→ F ⊗ L and F 7→ F∨. Thus the map Φ is
well defined.

By Proposition 6.2 the surface X is uniquely determined by the isomor-
phism type of its singularity, which is given by n and ±a mod n. This data
is determined by [F ] ∈ T as above, so Φ is injective. If F is an exceptional
vector bundle on P2, then there exists a Markov triple (a1, a2, a3) such that
rk(F ) = a1 and (c1(F )·h) = ±a−1

2 a3 mod a1 [R89, 3.2]. Let X be the surface
obtained from P(a2

1, a
2
2, a

2
3) by smoothing the singularities of index a2 and

a3. Then by (6.4) and (6.3) we have [F ] = Φ([X]). So Φ is surjective. �

Remark 6.5. If Y is a del Pezzo surface, we can show the following weaker
result: every exceptional bundle F on Y is obtained by the construction of
Theorem 1.1. The proof uses the classification of exceptional bundles on del
Pezzo surfaces [KO95].

7. Background

7.1. Reflexive sheaves. Let X be a normal variety. For F a coherent
sheaf on X we write F∨ := Hom(F,OX) for the dual of E. We say F is
reflexive if the natural map F → F∨∨ is an isomorphism. Equivalently, F
is reflexive if F is torsion-free and for any inclusion i : U ⊂ X of an open
subset with complement of codimension at least 2 we have i∗(F |U ) = F
[H80, 1.6]. For a coherent sheaf F we call F∨∨ the reflexive hull of F . A
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torsion-free sheaf F is reflexive iff it is satisfies Serre’s condition S2 [H80,
1.3]. In particular, a torsion-free sheaf F on a normal surface X is reflexive
iff it is Cohen–Macaulay.

Let X be a normal projective variety of dimension d. The first Chern
class defines a map

c1 : PicX → H2(X,Z).

It is an isomorphism if H1(OX) = H2(OX) = 0 (by the exponential se-
quence). Let ClX denote the class group of reflexive rank 1 sheaves on X
modulo isomorphism. Equivalently, ClX is the group of Weil divisors on X
modulo linear equivalence. We write OX(D) for the sheaf associated to a
Weil divisor D. Then PicX ⊂ ClX and we have the map

c1 : ClX → H2d−2(X,Z), OX(D) 7→ [D].

which is compatible with c1 : PicX → H2(X,Z) via

H2(X,Z)→ H2d−2(X,Z), α 7→ [X] ∩ α.
Let X be a normal projective surface with only quotient singularities.

For each singular point Pi ∈ X let Bi denote the intersection of X with a
small closed ball about Pi in some embedding, and Li the boundary of Bi.
Let Xo denote the complement of the interiors of the Bi. Then each Bi
is contractible (see e.g. [L84, 2.A]) and Xo is a compact oriented smooth
manifold with boundary ∪Li. We have natural identifications

H2(Xo,Z) = H2(Xo,∪Li,Z) = H2(X,∪Bi,Z) = H2(X,Z)

given by Poincaré duality for manifolds with boundary, excision, and con-
tractibility of the Bi. Now suppose in addition thatH1(OX) = H2(OX) = 0.
Then

PicX = H2(X,Z) ⊂ ClX = H2(Xo,Z) = H2(X,Z),

see [K05], Proposition 4.11.
Let X be a normal variety of dimension d. The canonical sheaf ωX is

the reflexive hull of the top exterior power ∧dΩX of the sheaf ΩX of Kähler
differentials. The canonical divisor class KX is the associated Weil divisor
class. If X is projective then the canonical sheaf ωX coincides with the
dualising sheaf of X [H77, III.7], [KM98, 5.75].

Let X be a normal projective surface and F a reflexive sheaf on X. Then,
since F is Cohen–Macaulay, there is a natural isomorphism

H i(X,F )
∼−→ H2−i(X,Hom(F, ωX))∗

for each i given by Grothendieck–Serre duality [KM98, 5.71].

Lemma 7.1. Let X be a projective normal surface with only quotient sin-
gularities and F a locally free sheaf on X. Then we have the Riemann–Roch
formula

χ(F ) = rk(F )χ(OX) +
1

2
c1(F )(c1(F )−KX)− c2(F ).
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Proof. Let π : X̃ → X be the minimal resolution of X and F̃ = π∗F . Then
we have the Riemann–Roch formula for F̃ on X̃:

χ(F̃ ) = rk(F̃ )χ(OX̃) +
1

2
c1(F̃ )(c1(F̃ )−KX̃)− c2(F̃ ).

Note that Riπ∗OX̃ = 0 for i > 0 (because quotient singularities are rational).

Thus χ(OX̃) = χ(OX) and χ(F̃ ) = χ(F ) by the Leray spectral sequence.

Also ci(F̃ ) = π∗ci(F ) for each i, so c1(F̃ )2 = c1(F )2, c2(F̃ ) = c2(F ), and

c1(F̃ ) ·KX̃ = π∗c1(F ) ·KX̃ = c1(F ) · π∗KX̃ = c1(F ) ·KX .

Combining we obtain the desired Riemann–Roch formula for F on X. �

7.2. Toric geometry. We use various constructions from toric geometry
which we review briefly here. We refer to [F93] for the basic definitions of
toric geometry.

7.2.1. Weighted projective space. The weighted projective space P(w0, . . . , wr)
is defined as the quotient

P(w0, . . . , wr) := (Ar+1 \ {0})/C×

where the action is given by

C× 3 λ : (x0, . . . , xr) 7→ (λw0x0, . . . , λ
wrxr).

Then P = P(w0, . . . , wr) is a normal projective variety of dimension r. We
may assume that any r of the wi have no common factors. We have weighted
homogeneous coordinates X0, . . . , Xr. The variety P is covered by affine
patches

(Xi 6= 0) = Ar/ 1
wi

(w0, . . . , ŵi, . . . , wr).

The variety P is the toric variety associated to the free abelian group
N = Zr+1/Z · (w0, . . . , wr) and the fan Σ in N ⊗ R of cones generated by
proper subsets of the standard basis of Zr+1.

The variety P carries a rank 1 reflexive sheaf OP(1) such that the global
sections of its nth reflexive tensor power OP(n) := (OP(1)⊗n)∨∨ are the
weighted homogeneous polynomials of degree n. The class group Cl(P)
of rank 1 reflexive sheaves modulo isomorphism is isomorphic to Z, gen-
erated by OP(1). The canonical sheaf ωP is isomorphic to OP(−

∑
wi).

The first Chern class c1 : Cl(P) → H2r−2(P,Z) is an isomorphism. Write
h := c1(OP(1)) for the positive generator of H2r−2(P,Z). Then the intersec-
tion product is given by hr = 1/(w0 · · ·wr).

7.2.2. Weighted blowups. Consider the cyclic quotient

X = Adx1,...,xd/
1
r (a1, . . . , ad).

The variety X is the affine toric variety associated to the free abelian group

N = Zd + Z · 1
r (a1, . . . , ad)
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and the cone σ ⊂ N ⊗ R generated by the standard basis of Zd. (That is,
writing M = Hom(N,Z) and σ∗ ⊂M ⊗ R for the dual cone, the semigroup
ring C[σ∗∩M ] is the invariant ring for the action of Z/rZ on C[x1, . . . , xd].)

Let w = 1
r (w1, . . . , wd) ∈ N be a primitive vector contained in the interior

of the cone σ. Let Σ̃ be the fan with support σ obtained by adding the ray
R≥0 ·w and subdividing σ into the cones spanned by w and the codimension

1 faces of σ. Then the fan Σ̃ determines a proper birational toric morphism

π : X̃ → X

called the weighted blowup of P ∈ X with weights 1
r (w1, . . . , wd) with re-

spect to the orbifold coordinates x1, . . . , xd. The morphism π restricts to an
isomorphism over X \ {P}, and the exceptional locus E = π−1(P ) is a quo-
tient of the weighted projective space P(w1, . . . , wd) by the action of a finite

abelian group. The toric variety X̃ is covered by affine charts U1, . . . , Ud
corresponding to the maximal cones of Σ.

Assume for simplicity that w generates N/Zd. Then E = P(w1, . . . , wd),
and the restriction of π to the chart U1 is given by

Adu,x′2,...,x′d/
1
w1

(−r, w2, . . . , wd)→ Adx1,...,xd/
1
r (a1, . . . , ad),

(u, x′2, . . . , x
′
d) 7→ (x1, . . . , xd) = (uw1/r, uw2/rx′2, . . . , u

wd/rx′d).

The other charts are described similarly.

7.3. Deformation theory.

Lemma 7.2. Let X be a normal projective surface. Let X/(0 ∈ D) be the
formal versal deformation of X and for each singularity Pi ∈ X let (Pi ∈
Xi)/(0 ∈ Di) be its formal versal deformation. Then there is a morphism
(not unique)

f : (0 ∈ D)→
∏

(0 ∈ Di)

of formal schemes such that the deformation (Pi ∈ X )/D of (Pi ∈ X)
is isomorphic to the pullback of the deformation (Pi ∈ Xi)/(0 ∈ Di). If
H2(TX) = 0 then f is formally smooth of relative dimension dimH1(TX).
In particular if H1(TX) = H2(TX) = 0 then f is an isomorphism.

Proof. Let L·X denote the cotangent complex of X. Then the deforma-

tion functor of X has tangent space Ext1(L·X ,OX) and obstruction space

Ext2(L·X ,OX), and the deformation functor of the singularities of X has

tangent space H0(Ext1(L·X ,OX)) and obstruction space H0(Ext2(L·X ,OX))
[I71, III.2.1.7]. The cotangent complex L·X satisfies LiX = 0 for i > 0
and H0(L·X) = ΩX , so Hom(L·X ,OX) = Hom(ΩX ,OX) = TX . Thus
H i(Hom(L·X ,OX)) = H i(TX), and H2(TX) = 0 by assumption. The sheaf

Ext1(L·X ,OX) is supported on the singular locus of X, which is a finite set

because X is a normal surface. Thus H i(Ext1(L·X ,OX)) = 0 for i > 0. Now
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the local-to-global spectral sequence for Ext·(L·X ,OX) gives a short exact
sequence

0→ H1(TX)→ Ext1(L·X ,OX)→ H0(Ext1(L·X ,OX))→ 0

and an isomorphism

Ext2(L·X ,OX)→ H0(Ext2(L·X ,OX)).

It follows that f : (0 ∈ D) →
∏

(0 ∈ Di) is formally smooth with relative
tangent space H1(TX). �

7.4. Glueing vector bundles on reducible schemes.

Lemma 7.3. Let X be a connected reduced scheme with two irreducible
components X1 and X2. Let X12 be the scheme theoretic intersection of X1

and X2 in X. Suppose given vector bundles F1 on X1, F2 on X2, and F12

on X12, and isomorphisms

θ1 : F1|X12 → F12, θ2 : F2|X12 → F12.

Let F denote the kernel of the morphism

F1 ⊕ F2 → F12, (s1, s2) 7→ θ1(s1|X12)− θ2(s2|X12).

of sheaves on X. Then F is a vector bundle on X such that the projection
F |Xi → Fi is an isomorphism for each i.

We refer to F as the vector bundle on X obtained by glueing F1 on X1

and F2 on X2 along F12 on X12.

Proof. We have an exact sequence of sheaves on X

0→ OX → OX1 ⊕OX2 → OX12 → 0.

We may work locally at a point P ∈ X12 ⊂ X. Let s1, . . . , sr be a basis of
the free OX12,P -module (F12)P . Lift this basis to a basis si1, . . . , s

i
r of the

free OXi,P -module (Fi)P for each i = 1, 2. Then we have a commutative
diagram with exact rows

0 −−−−→ O⊕rX,P −−−−→ O⊕rX1,P
⊕O⊕rX2,P

−−−−→ O⊕rX12,P
−−−−→ 0y y y

0 −−−−→ FP −−−−→ (F1)P ⊕ (F2)P −−−−→ (F12)P −−−−→ 0

such that the middle and right vertical arrows are the isomorphisms given
by the chosen bases. Hence the left vertical arrow is an isomorphism. So
F is locally free, and the morphism F |Xi → Fi is an isomorphism for each
i. �
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faisceaux cohérents I, Inst. Hautes Études Sci. Publ. Math. 11 (1961).
[G90] A. Gorodentsev, Exceptional objects and mutations in derived categories, in Helices

and vector bundles, 57–73, London Math. Soc. Lecture Note Ser. 148, C.U.P., 1990.
[H04] P. Hacking, Compact moduli of plane curves, Duke Math. J. 124 (2004), 213–257.
[HP10] P. Hacking, Y. Prokhorov, Smoothable del Pezzo surfaces with quotient singular-

ities, Compos. Math. 146 (2010), no. 1, 169–192.
[H77] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, 1977.
[H80] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121-176.
[H10] R. Hartshorne, Deformation theory, Grad. Texts in Math. 257, Springer, 2010.
[HL97] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects

Math. E31, 1997.
[I71] L. Illusie, Complexe cotangent et déformations I, Lecture Notes in Math. 239,
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