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Chapter 1

Compact moduli spaces of
surfaces and exceptional vector
bundles

The moduli space of surfaces of general type has a natural compactification due to
Kollár and Shepherd-Barron [KSB88] which is analogous to the Deligne-Mumford
compactification of the moduli space of curves [DM69]. However, very little is
known about this moduli space or its compactification in general (for example it
can have many irreducible components [C86] and be highly singular [V06]). A key
question is to enumerate the boundary divisors in cases where the moduli space is
well behaved. The most basic boundary divisors are those given by degenerations of
the smooth surface to a surface with a cyclic quotient singularity of a special type,
first studied by J. Wahl [W81]. We describe a construction which relates these
boundary divisors to the classification of stable vector bundles on the smooth
surface in the case H2,0 = H1 = 0. In particular we connect with the theory of
exceptional collections of vector bundles used in the study of the derived category
of coherent sheaves.

We review the necessary background material and put a strong emphasis on
examples. In particular we discuss the examples of del Pezzo surfaces and surfaces
of general type with K2 = 1 (based on work by Anna Kazanova).

Notation and Background.

We work throughout over the field k = C of complex numbers. We write
Gm = C∗ and µn ⊂ Gm for the group of nth roots of unity.

For X a variety and P ∈ X a point we write (P ∈ X) to denote a small
complex analytic neighbourhood of P ∈ X or an étale neighbourhood of P ∈ X.

If D is a Weil divisor on a normal variety X, we say D is Q-Cartier if mD is
Cartier for some m ∈ N. If D1, . . . , Dn are Q-Cartier divisors on a proper normal
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4 Chapter 1. Compact moduli of surfaces and vector bundles

variety X of dimension n, let mi ∈ N be such that miDi is Cartier. We define the
intersection number

D1D2 · · ·Dn := ((m1D1)(m2D2) · · · (mnDn))/m1m2 · · ·mn ∈ Q.

Let r ∈ N and a1, . . . , an ∈ Z/rZ. We write An/ 1
r (a1, . . . , an), or just

1
r (a1, . . . , an), for the quotient

An/µr, µr 3 ζ : (x1, . . . , xn) 7→ (ζa1x1, . . . , ζ
anxn).

We always assume that gcd(a1, . . . , âi, . . . , an, r) = 1 for each i so that the µr
action is free in codimension 1. In the case n = 2, the weights a1 and a2 are
coprime to r, so, composing the action with an automorphism µr → µr, ζ 7→ ζb

we may assume a1 = 1. The singularity (P ∈ X) = (0 ∈ A2/ 1
r (1, a)) has resolution

π : (E ⊂ X̃)→ (P ∈ X)

with exceptional locus E = π−1(P ) a nodal chain of smooth rational curves with
self-intersection numbers −b1, . . . ,−br, where bi ≥ 2 for each i and

r/a = [b1, . . . , br] := b1 − 1/(b2 − 1/(b3 − 1/(b4 · · · − 1/br) · · · ))

is the expansion of r/a as a Hirzebruch–Jung continued fraction [F93], 2.6.
Let n ∈ N and a0, . . . , an ∈ N. We write P = P(a0, . . . , an) for the weighted

projective space

P(a0, . . . , an) = (An+1\{0})/Gm, Gm 3 λ : (X0, . . . , Xn) 7→ (λa0X0, . . . , λ
anXn).

We always assume that gcd(a0, . . . , âi, . . . , an) = 1 for all i. Then P(a0, . . . , an) is
a normal projective variety covered by affine charts

(Xi 6= 0) = An/ 1
ai

(a0, . . . , âi, . . . , an)

where the affine orbifold coordinates are given by xji = Xj/X
aj/ai
i for j 6= i. We

have
P(a0, . . . , an) = Proj k[X0, . . . , Xn]

where the grading of the polynomial ring is given by degXi = ai. The sheaf
OP(1) = OP(H) is a rank one reflexive sheaf corresponding to a Weil divisor class
H. The global sections of OP(n) = OP(nH) are the homogeneous polynomials of
(weighted) degree n. The divisor class group Cl(P) is isomorphic to Z, generated
by H. The divisor H is Q-Cartier, and satisfies

Hn = 1/(a0 · · · an).

The canonical divisor class KP is given by

KP = −(a0 + a1 + · · ·+ an)H.

The variety P is the toric variety associated to the fan Σ in the lattice N =
Zn+1/Z(a0, . . . , an) consisting of cones generated by proper subsets of the standard
basis of Zn+1. See [F93] for background on toric varieties.
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1.1 Moduli spaces of surfaces of general type

1.1.1 Surfaces of general type

Let X be a smooth projective complex surface. We say X is of general type if for
n� 0 the rational map defined by the linear system |nKX | is birational onto its
image. Equivalently, h0(nKX) ∼ cn2 for some c > 0 as n→∞.

Example 1.1.1. If X ⊂ P3 is a smooth hypersurface of degree d then KX =
OX(d− 4) by the adjunction formula. Hence X is a surface of general type if and
only if d ≥ 5 (and in this case KX is very ample).

If X is a surface of general type then we have the following more precise
statements: There is a birational morphism

f : X → Xmin

from X to a smooth surface Xmin such that KXmin
is nef, that is,

KXmin
· C ≥ 0 for all curves C ⊂ Xmin.

The morphism f is the composition of a sequence of contractions of (−1)-curves,
or, equivalently, X is obtained from Xmin by a sequence of blowups. The surface
Xmin is called the minimal model of X and is uniquely determined. For a single
blowup π : S̃ → S of a point of a smooth surface with exceptional curve E we have

KS̃ = π∗KS + E,

so K2
S̃

= K2
S − 1. Thus K2

Xmin
= K2

X + N ≥ K2
X , where N is the number of

exceptional curves of f .
Moreover, there is a further birational morphism

g : Xmin → Xcan

to a normal surface Xcan such that KXcan
is ample. The morphism g is given by

contracting all the (−2)-curves on Xmin. Each connected component of the union
of (−2)-curves is necessarily a nodal curve with dual graph one of the A,D,E
Dynkin diagrams, and is contracted to a Du Val singularity P ∈ Xcan. Here a
Du Val singularity is a quotient singularity (0 ∈ A2/G) where G ⊂ SL(2,C). The
surface Xcan is called the canonical model of X. The morphism g : Xmin → Xcan

is the minimal resolution of Xcan. The Weil divisor KXcan
is Cartier and KXmin

=
g∗KXcan

.
Returning to the definition of surfaces of general type, the rational map

defined by |nKX | for n� 0 is the morphism g ◦ f : X → Xcan (and n ≥ 5 suffices
[BHPV04], VII.5, p. 279). The constant c such that h0(nKX) ∼ cn2 is given by
c = 1

2K
2
Xmin

= 1
2K

2
Xcan

(by the Riemann–Roch formula and Kodaira vanishing).
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If X is a minimal surface of general type then it has finite automorphism
group. Indeed, we have an embedding

ϕ|nKXcan | : Xcan ↪→ Pm

for some n� 0 and m = m(n), and so an injective homomorphism

Aut(X) = Aut(Xcan) ↪→ PGL(m+ 1,C).

which realizes Aut(X) as a quasiprojective scheme. Now the tangent space to
Aut(X) at the identity equals H0(TX), and we have

H0(TX) = H2(ΩX ⊗ ωX)∗ = 0

by Serre duality and Kodaira–Nakano vanishing ([GH78], p. 154). Thus Aut(X)
is discrete and hence finite.

1.1.2 Simultaneous resolution of Du Val singularities

If X → S is a flat family of surfaces with Du Val singularities, then there exists
a finite surjective base change S′ → S such that the pullback X ′ → S′ admits a
simultaneous resolution [KM98], 4.28. That is, there exists a flat family Y → S′

and a birational morphism Y → X ′ over S′ such that the induced morphism
Ys → X ′s is the minimal resolution of X ′s for each s ∈ S′.

Example 1.1.2. Let

X = (x2 + y2 + z2 + t = 0) ⊂ A3
x,y,z × A1

t → S = A1
t .

Thus X is a smooth 3-fold, the fiber Xt is smooth for t 6= 0, and the fiber X0 has
an A1 singularity (or ordinary double point). Consider the base change

S′ = A1
s → S = A1

t , s 7→ t = s2.

Then
X ′ = (x2 + y2 + z2 + s2 = 0) ⊂ A3

x,y,z × A1
s → S′ = A1

s

Thus X ′ has a 3-fold ordinary double point singularity, and there are two small
resolutions fj : Yj → X ′, j = 1, 2, of X ′ given by blowing up the loci

Zj = (x+ iy = z + (−1)jis = 0).

In each case the exceptional locus Cj of fj is a copy of P1 with normal bundle
OP1(−1) ⊕ OP1(−1). The morphism fj defines a simultaneous resolution of the
family X/S, the curve Cj being identified with the unique exceptional (−2)-curve
of the minimal resolution of the A1 singularity (0 ∈ X0).

An alternative construction of the resolutions fj is as follows: we can blowup
the point P ∈ X ′ to obtain a resolution Z → X ′ with exceptional locus E ' P1×P1
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with normal bundle OP1(−1) � OP1(−1). Then there exist birational morphisms
gj : Z → Yj , j = 1, 2 with exceptional locus E such that E is contracted to Cj via
one of the projections P1 × P1 → P1. The picture can be also described torically:
the variety X ′ is isomorphic to the affine toric variety associated to the cone
〈e1, e2, e3, e4〉R≥0

in the lattice Z4/Z(1, 1,−1,−1) and the resolutions correspond
to subdivisions of this cone.

It follows that, for surfaces of general type, the coarse moduli space of mini-
mal models is identified with the coarse moduli space of canonical models. This is
important because on the canonical model the canonical line bundle is ample, and
this can be used to construct the moduli space as a quotient of a locally closed
subscheme of a Hilbert scheme.

Note also that the condition that a surface of general type X is minimal is
both open and closed in families. (Indeed, if KX is nef then nKX is basepoint
free for n� 0, and the same is true for nearby fibers of a deformation X/S of X
because we can lift sections of nKX to sections of nKX/S for n ≥ 2 using Kodaira
vanishing and cohomology and base change. Thus being minimal is open. Also,
KX is not nef if and only if X contains a (−1)-curve, and (−1)-curves deform in
families. So being minimal is closed.) Thus we can restrict attention to minimal
surfaces of general type.

1.1.3 Moduli

Let M = MK2,χ denote the moduli space of normal projective surfaces X with at
worst Du Val singularities such that KX is ample and K2

X = K2, χ(OX) = χ.

Example 1.1.3. Let U ⊂ P = PH0(OP3(d)) denote the locus of surfaces of degree
d ≥ 5 in P3 having at worst Du Val singularities. Then U is Zariski open with
complement of codimension ≥ 2. (Indeed if U ′ ⊂ P denotes the locus of smooth
surfaces then D := P \ U ′ is an irreducible divisor (the zero locus of the discrim-
inant), and U ′ ( U because the fiber of the universal family over a general point
of D has a Du Val singularity of type A1.) Now the quotient U/PGL(4,C) is a
quasiprojective variety with quotient singularities, and is a Zariski open subset
of M . (The quotient is a quasiprojective variety by a general result of Gieseker
on stability of surfaces of general type in the sense of geometric invariant theory
(GIT) [G77].)

Note that, unlike the case of plane curves, every deformation of a smooth
surface X ⊂ P3 of degree d ≥ 5 is realized in P3. Indeed it suffices to show that
the line bundle OX(1) deforms (then sections lift using H1(OX(1)) = 0). For L
a line bundle on X, if L⊗n deforms for some n > 0 then so does L (this follows
from the Lefschetz (1, 1) theorem [GH78], p. 163). In our case KX = OX(d − 4),
d−4 > 0, and KX deforms, so OX(1) deforms as required. (However, if d = 4 then
X is a K3 surface and there exist deformations of X which are not projective, so
in particular are not realized in P3.)
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1.1.4 Expected dimension

We can compute the expected dimension of M using the Hirzebruch–Riemann–
Roch formula. Let X be a smooth projective surface. Write

c1 = c1(TX) = −KX

and
c2 = c2(TX) = e(X) =

∑
i

(−1)i dimRH
i(X,R).

For F a vector bundle on X the Hirzebruch–Riemann–Roch formula is the equality

χ(F ) = (ch(F ) · td(X))2

where

ch(F ) = rk(F ) + c1(F ) +
1

2
(c1(F )2 − 2c2(F ))

is the Chern character and

td(X) = 1 +
1

2
c1 +

1

12
(c21 + c2)

is the Todd class. The case F = OX is Noether’s formula

χ(OX) =
1

12
(c21 + c2).

Putting F = TX we obtain

χ(TX) = (ch(TX) · td(X))2 =
1

6
(7c21 − 5c2) = 2K2

X − 10χ(OX)

where the last equality is given by Noether’s formula. Now suppose that X is of
general type. Then H0(TX) = 0 (X has no infinitesimal automorphisms), H1(TX)
is the tangent space to M at X (the space of first order infinitesimal deformations
of X), and obstructions to extending infinitesimal deformations to higher order
are contained in H2(TX). Thus the expected dimension of the moduli space M =
MK2,χ equals

exp.dim(M) = h1(TX)− h2(TX) = −χ(TX) = 10χ− 2K2.

In general dimM ≥ exp.dim(M). If H2(TX) = 0 then M is smooth of dimension
exp.dim(M) at [X] ∈M .

1.1.5 Compactification

The moduli space MK2,χ has a natural compactification MK2,χ ⊂ MK2,χ analo-
gous to the Deligne-Mumford compactification Mg ⊂ Mg of the moduli space of
curves of genus g.
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1.1.6 Stable surfaces

A stable surface is a reduced Cohen-Macaulay projective surface X such that X
has semi log canonical (slc) singularities and the dualizing sheaf ωX is ample.

1.1.7 Semi log canonical singularities

We will not define slc singularities here, but we note that they include quotients
of smooth or double normal crossing points

(xy = 0) ⊂ A3.

Moreover a slc surface has only double normal crossing singularities away from a
finite set.

1.1.8 Dualizing sheaf

The dualizing sheaf plays the role of the canonical line bundle for an slc surface
X.

Let X be an slc surface. If X is normal (equivalently, X has isolated singu-
larities), then the dualizing sheaf is the push forward of the canonical line bundle
from the smooth locus i : U ⊂ X,

ωX = i∗ωU = i∗OU (KU ).

Thus the sheaf ωX is the rank one reflexive sheaf OX(KX) corresponding to the
Weil divisor class KX given by the closure of the divisor (Ω) of zeroes and poles
of a meromorphic section Ω of ωU .

In general, let U ⊂ X denote the open locus of smooth and double normal
crossing points (then the complement X \ U is finite). Let νU : Uν → U denote
the normalization of U , ∆U ⊂ U the singular locus of U , and ∆ν

U ⊂ Uν the
inverse image of ∆U . Thus Uν is smooth, the restriction Uν \∆ν

U → U \∆U is an
isomorphism, and ∆ν

U → ∆U is a finite étale morphism of degree 2. Then ωU is a
line bundle and is given by the exact sequence

0→ ωU → νU∗ωUν (∆ν
U )→ ω∆U

where the last map is given by the Poincaré residue map

ωUν (∆ν
U )|∆ν

U
→ ω∆ν

U

and the norm
νU∗ω∆ν

U
→ ω∆U

.

(This description of the dualizing sheaf ωU is a straightforward generalization of
the description for nodal curves.) Writing ν : Xν → X for the normalization of X,
∆ ⊂ X for the closure of ∆U , and ∆ν ⊂ Xν for the inverse image of ∆, we have

ωX = i∗ωU = OX(KX)
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where KX is a Weil divisor class on X such that its restriction to Xν equals
KXν + ∆ν .

Example 1.1.4. Suppose P ∈ X is a double normal crossing point, that is, (P ∈ X)
is locally analytically isomorphic to (0 ∈ (xy = 0) ⊂ A3). Then, working locally
analytically at P ∈ X, we have ∆ = (x = y = 0) ⊂ X, Xν = A2

x,z t A2
y,z (disjoint

union), and

ωX =

{(
f(x, z)

dx

x
∧ dz, g(y, z)

dy

y
∧ dz

) ∣∣∣∣∣ f, g holomorphic, f(0, z) + g(0, z) = 0

}
.

1.1.9 The index of an slc singularity

Part of the definition of an slc singularity (P ∈ X) requires that KX is a Q-Cartier
divisor. That is, there exists N ∈ N such that NKX is Cartier, or equivalently

ω
[N ]
X := i∗(ω

⊗N
U ) = OX(NKX)

is a line bundle. The least such N is called the index of (P ∈ X).

Example 1.1.5. Suppose (P ∈ X) is a quotient singularity (0 ∈ A2/G), G ⊂
GL(2,C). We may assume that G acts freely on A2 \ {0} by Chevalley’s theorem.
Then, working locally analytically at P ∈ X, we have the quotient map

q : (0 ∈ A2)→ (P ∈ X),

and ωX = (q∗ωA2)G. Now ωA2 = OA2 · dx ∧ dy, and for g ∈ G we have

g∗(dx ∧ dy) = det(g)dx ∧ dy.

The subgroup det(G) ⊂ C∗ is the group µN of Nth roots of unity for some N ∈ N.
So (dx ∧ dy)⊗N is G-invariant and we have

ω
[N ]
X = (q∗OA2)G · (dx ∧ dy)⊗N = OX · (dx ∧ dy)⊗N .

Thus ω
[N ]
X is a line bundle. The number N is the index of (P ∈ X).

1.1.10 The index one cover

Let P ∈ X be a slc surface singularity of index N . Working locally analytically at
P ∈ X, there is a canonically defined covering

q : (Q ∈ Z)→ (P ∈ X)

such that

(1) q is a finite Galois covering with group µN ' Z/NZ.



1.1. Moduli spaces of surfaces of general type 11

(2) q is étale outside P ∈ X, and q−1(P ) = Q.

(3) Z is a slc singularity and ωZ is a line bundle.

Explicitly,

Z = Spec
X

N−1⊕
j=0

OX(jKX)


where the multiplication is given by fixing an isomorphism θ : OX(NKX)→ OX ,
and the µN action is given by

µN 3 ζ : OX(KX)→ OX(KX), Ω 7→ ζ · Ω.

(Note: If we work locally analytically at P ∈ X then the isomorphism type of the
covering is independent of the choice of θ.) The covering q is called the index one
cover of P ∈ X.

Example 1.1.6. Let (P ∈ X) be a quotient singularity (0 ∈ A2/G), where G ⊂
GL(2,C) acts freely on A2 \ {0}. Then, writing H = ker(det : G → C∗), we have
index one cover

q : (Q ∈ Z) = (0 ∈ A2/H)→ (P ∈ X) = (0 ∈ A2/G)

with group
G/H = det(G) = µN ⊂ C∗

for some N ∈ N. Note that H ⊂ SL(2,C) so the index one cover is a Du Val
singularity.

1.1.11 Q-Gorenstein families of stable surfaces

Definition 1.1.7. For a scheme S of finite type over C, a Q-Gorenstein family of
stable surfaces over S is a flat morphism X → S with the following properties.

(1) For each (closed) point s ∈ S the fiber Xs is a stable surface, that is, Xs is
a projective surface with slc singularities such that the dualizing sheaf ωXs
is ample.

(2) For each point s ∈ S and P ∈ Xs, the deformation (P ∈ X )/(s ∈ S)
of the singularity P ∈ Xs is induced by a deformation of the index one
cover. That is, writing N for the index of the singularity (P ∈ Xs) and
q : (Q ∈ Z) → (P ∈ Xs) for its index one cover, there is a µN -invariant
deformation (Q ∈ Z)/(s ∈ S) of (Q ∈ Z) such that (P ∈ X ) = (Q ∈ Z)/µN .

Example 1.1.8. Let P ∈ X be the quotient singularity 1
dn2 (1, dna − 1) for some

d, n, a ∈ N with gcd(a, n) = 1. Then (P ∈ X) has index n and the index one
cover q : (Q ∈ Z) → (P ∈ X) is given by (Q ∈ Z) = 1

dn (1,−1). In the notation
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of Example 1.1.6 we have H = µdn ⊂ G = µdn2 . The germ (Q ∈ Z) is a Du Val
singularity of type Adn−1. There is an identification

(0 ∈ A2
u,v/

1
dn (1,−1))

∼−→ (0 ∈ (xy = zdn) ⊂ A3
x,y,z), (u, v) 7→ (udn, vdn, uv)

given by writing down generators for the invariant ring k[u, v]µdn (the coordinate
ring of the affine variety A2/µdn).

The deformation (Q ∈ Z)/(0 ∈ Adn−1) of the hypersurface

(Q ∈ Z) = (0 ∈ (xy = zdn) ⊂ A3)

given by

(Q ∈ Z) = (0 ∈ (xy = zdn + adn−2z
dn−2 + · · ·+ a1z + a0) ⊂ A3

x,y,z ×Adn−1
a0,...,adn−2

)

is versal, that is, every deformation of (Q ∈ Z) is obtained from it by pullback. In
general, if (Q ∈ Z) is an isolated hypersurface singularity (0 ∈ (f = 0) ⊂ A3

x,y,z),
then the C-vector space

T 1 := C[[x, y, z]]

/(
f,
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
is finite dimensional. Letting g1, . . . , gτ ∈ C[x, y, z] be a lift of a basis of T 1, the
deformation (Q ∈ Z)→ (0 ∈ Ar) of (Q ∈ Z) given by

(Q ∈ Z) = (0 ∈ (f + t1g1 + · · ·+ tτgτ = 0) ⊂ A3
x,y,z × Art1,...,tτ )

is versal [KM98], 4.61.
The action of µn = µdn2/µdn on (Q ∈ Z) is given by

µn 3 ζ : (x, y, z)→ (ζx, ζ−1y, ζaz). (1.1.1)

It lifts to an action on (Q ∈ Z)/(0 ∈ Adn−1) given by

µn 3 ζ : ((x, y, z), (aj))→ ((ζx, ζ−1y, ζaz), (ζ−jaaj)).

The versal µn-invariant deformation of (Q ∈ Z) is obtained as the restriction of
(Q ∈ Z)/(0 ∈ Adn−1) to the fixed locus of the action of µn on the base. Assuming
n > 1, we obtain

(Q ∈ Z ′) = (xy = zdn+a(d−1)nz
(d−1)n+ · · ·+anz+a0) ⊂ A3

x,y,z×Ada0,an,...,a(d−1)n
.

The versal Q-Gorenstein deformation of (P ∈ X) is given by the quotient

(P ∈ X ) = (xy = zdn+a(d−1)nz
(d−1)n+· · ·+anz+a0) ⊂ (A3

x,y,z/
1
n (1,−1, a))×Ad.
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1.1.12 The relative dualizing sheaf

If X/S is a Q-Gorenstein family of stable surfaces then the relative dualizing sheaf
ωX/S is a Q-line bundle on X which is relatively ample over S. This is the reason
we require the condition (2) in Definition 1.1.7. To explain, note first that it is
a general fact that for a flat morphism X → S with Cohen-Macaulay fibers the
dualizing sheaf ωX/S is defined and commutes with base change [C00], 3.6.1. In
particular, if s ∈ S is a point then the natural map

ωX/S |Xs → ωXs

is an isomorphism. In particular, ωXs is a line bundle near P ∈ Xs if and only if
ωX/S is a line bundle near P ∈ X (by Nakayama’s lemma). Let i : U ⊂ X denote
the open locus where ωX/S is a line bundle, then its complement X \ U has finite

fibers over S, and we define ω
[N ]
X/S = i∗ω

⊗N
U/S .

Now, given s ∈ S and P ∈ Xs, let N be the index of (P ∈ Xs) and (Q ∈
Z) → (P ∈ Xs) the index one cover. Then the deformation (P ∈ X )/(s ∈ S)
is obtained as the quotient of a µN -invariant deformation (Q ∈ Z)/(s ∈ S) of
(Q ∈ Z). Now ωZ is a line bundle by construction, so ωZ/S is also a line bundle
by the base change property. So, working locally analytically at P ∈ X , we have

ω
[N ]
X/S = (q∗ω

⊗N
Z/S)µN ' (q∗OZ)µN = OX ,

that is, ω
[N ]
X/S is a line bundle near P ∈ X . Moreover, we have a natural isomor-

phism

ω
[N ]
X/S |Xs → ω

[N ]
Xs = OXs(NKXs)

(Indeed, we have a natural isomorphism over the open set Us by the base change
property for ωU/S , Us ⊂ Xs has finite complement, and both sheaves are line
bundles, so the isomorphism extends over Xs.)

As a consequence, for a Q-Gorenstein family of slc surfaces X/S the numerical
invariant K2

Xs ∈ Q is independent of s ∈ S. This property fails in general in the
absence of the Q-Gorenstein condition.

Example 1.1.9. Let Fn denote the nth Hirzebruch surface, n ≥ 0. That is, Fn =
P(OP1 ⊕ OP1(−n)) is the P1-bundle over P1 with a section B ⊂ Fn such that
B2 = −n. One can compute that h1(TFn) = max(n − 1, 0) and h2(TFn) = 0. So
the versal deformation space of Fn is smooth of dimension max(n− 1, 0).

The fibers of the versal deformation are Fm for m ≤ n and m ≡ n mod 2.
This can be seen as follows: writing Fn = P(E), E = OP1 ⊕OP1(−n) we consider
deformations of the (trivial) extension

0→ OP1(−n)→ E → OP1 → 0. (1.1.2)

These are parametrized by

Ext1(OP1 ,OP1(−n)) = H1(OP1(−n)) = H0(OP1(n− 2))∗ ' Cmax(n−1,0).
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The versal deformation of Fn is the projectivization of the versal deformation of
the extension (1.1.2).

Now let n ≥ 2 and consider a non-trivial one parameter deformation X/A1

of X = Fn. Then the general fiber Xt is isomorphic to Fm for some m < n,
m ≡ n mod 2, and the negative section B ⊂ Fn does not deform to the general
fiber. There is a birational morphism f : X → Y over A1 with exceptional locus B.
(The morphism f can be defined explicitly by the line bundle L on X such that
L|Fn = OFn(B + nA), where A denotes a fiber of the morphism Fn → P1.) The
special fiber Y = Y0 is the contraction of the curve B ⊂ Fn. This is the weighted
projective plane Y = P(1, 1, n) (or, equivalently, the cone over the rational normal
curve P1 ↪→ Pn of degree n). The exceptional curve B ⊂ X is contracted to the
point P = (0 : 0 : 1) ∈ Y , which is a cyclic quotient singularity of type 1

n (1, 1).
We have K2

Fm = 8 for all m, whereas

K2
Y = (−(1 + 1 + n)H)2 =

(n+ 2)2

n
.

Thus K2
Yt is not constant for t ∈ A1, and so the family Y/A1 is not Q-Gorenstein,

unless n = 2. If n = 2 then Y = P(1, 1, 2) is the quadric cone, and P ∈ Y is an A1

singularity. Thus P ∈ Y has index 1 (ωY is a line bundle) and any deformation is
automatically Q-Gorenstein. If n > 2 then the index of P ∈ Y is n/ gcd(n, 2).

If n = 4 then K2
Y = 9 ∈ Z. In this case the surface Y = P(1, 1, 4) admits a

one parameter Q-Gorenstein deformation Z/A1 with general fiber the projective
plane P2. It may be constructed explicitly as follows. Let W = P2 × A1 be the
trivial family over A1 with fiber P2. Let Q ⊂W =W0 = P2 be a smooth conic in
the special fiber. Let W̃ → W be the blowup of the conic Q. The special fiber W̃0

is a (reduced) normal crossing divisor with irreducible components the exceptional
divisor E and the strict transform W ′ of the special fiber W . Here W ′ → W is
an isomorphism and E ' F4 (because the normal bundle of P1 ' Q ⊂ W is
isomorphic to OP1(4) ⊕ OP1). The intersection W ′ ∩ E is given by Q ⊂ W and
the negative section B ⊂ F4. The normal bundle NW ′/W̃ of W ′ ' P2 in W̃ is

isomorphic to OP2(−2). (Indeed W ′+E = W̃0 ∼ 0, so W ′|W ′ ∼ −E|W ′ = −Q.) It
follows that there is a birational contraction W̃ → Z over A1 with exceptional locus
W ′ ' P2, with W ′ being contracted to a singular point P ∈ Z which is a cyclic
quotient singularity of type 1

2 (1, 1, 1). The special fiber Z = Z0 is isomorphic to the
contraction of B ⊂ F4, that is, Z ' Y = P(1, 1, 4). For t 6= 0 the fiber Zt =Wt =
P2 is unchanged. The family Z/A1 is Q-Gorenstein because the index one cover
of the 3-fold quotient singularity P ∈ Z defines a equivariant deformation of the
index one cover of P ∈ Z. The local deformation (P ∈ Z)/(0 ∈ A1

t ) is isomorphic
to the versal Q-Gorenstein deformation of Example 1.1.8 for d = n = a = 1.

The deformation Z/A1 may also be described explicitly by equations as fol-
lows: The surface P(1, 1, 4) may be embedded in the weighted projective space
P(1, 1, 1, 2) by the 2-uple embedding

P(1, 1, 4)
∼−→ (X0X2 = X2

1 ) ⊂ P(1, 1, 1, 2)
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(U0, U1, V ) 7→ (X0, X1, X2, Y ) = (U2
0 , U0U1, U

2
1 , V ).

Then the family Z/A1
t is the deformation

Z = (X0X2 = X2
1 + tY ) ⊂ P(1, 1, 1, 2)× A1

t .

1.1.13 Definition of the moduli space MK2,χ of stable surfaces

We can now define the compactification MK2,χ ⊂ MK2,χ of the moduli space
of surfaces of general type. For S a scheme of finite type over C, let MK2,χ(S)
denote the category with objects Q-Gorenstein families X/S of stable surfaces
over S such that K2

Xs = K2 and χ(OXs) = χ for each s ∈ S, and morphisms

isomorphisms X → X ′ of schemes over S. This defines a stack MK2,χ over the
category of schemes of finite type over C for the étale topology.

Theorem 1.1.10. [KSB88],[AM04] The stackMK2,χ is a proper Deligne–Mumford
stack of finite type over C.

Properness of the moduli stack MK2,χ follows from the minimal model pro-
gram (MMP) for 3-folds. This is the exact analogue of the stable reduction theo-
rem for curves, which uses the classical theory of minimal models of surfaces, cf.
[DM69], 1.12. Given a family of smooth surfaces of general type over a punctured
disc, results of the MMP produce (after a finite base change) a distinguished ex-
tension of the family over the disc (the relative canonical model of an extension
with special fiber a reduced normal crossing divisor). The definition of stable sur-
face is obtained by characterizing the possible special fibers of relative canonical
models, so the moduli stack satisfies the valuative criterion of properness.

The moduli space MK2,χ is by definition the coarse moduli space of the stack
MK2,χ.

Theorem 1.1.11. [K90] The moduli space MK2,χ is a projective scheme of finite
type over C.

1.2 Wahl singularities

Definition 1.2.1. A Wahl singularity (P ∈ X) is a surface cyclic quotient singu-
larity of type 1

n2 (1, na− 1), for some n, a with gcd(a, n) = 1.

Let P ∈ X be a Wahl singularity of type 1
n2 (1, na − 1). Then P ∈ X has

index n and the index one cover q : (Q ∈ Z) → (P ∈ X) is a cyclic quotient
singularity of type 1

n (1,−1), that is, a Du Val singularity of type An−1. We obtain
an identification

(P ∈ X) = (Q ∈ Z)/µn ' (0 ∈ (xy = zn) ⊂ A3/ 1
n (1,−1, a)).
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The versal Q-Gorenstein deformation of (P ∈ X) is given by

(P ∈ X ) = (0 ∈ (xy = zn + t) ⊂ (A3/ 1
n (1,−1, a))× A1

t ).

This is the special case d = 1 of Example 1.1.8. In particular, the versal Q-
Gorenstein deformation space of (P ∈ X) is smooth of dimension 1, and the
general fiber of the deformation is smooth.

1.2.1 Degenerations with Wahl singularities define boundary divi-
sors of the moduli space MK2,χ

We say that a slc surface X admits a Q-Gorenstein smoothing if there exists a one
parameter Q-Gorenstein deformation X/(0 ∈ A1

t ) of X with smooth general fiber.
For X a variety with isolated singularities, we say a deformation X/(0 ∈ S) is
equisingular if for each singularity P ∈ X the local deformation (P ∈ X )/(0 ∈ S)
is trivial.

If X is a normal projective surface with a unique singularity P ∈ X of Wahl
type, KX is ample, and X admits a Q-Gorenstein smoothing, then the locus of
equisingular deformations of X defines a boundary divisor D ⊂MK2,χ. Indeed, if
X/(0 ∈ S) is the versal Q-Gorenstein deformation of X, and (P ∈ X loc)/(0 ∈ A1)
is the versal Q-Gorenstein deformation of the Wahl singularity P ∈ X, then (by the
versal property) there is a morphism (not uniquely determined) of local analytic
germs

F : (0 ∈ S)→ (0 ∈ A1
t )

such that the local deformation (P ∈ X )/(0 ∈ S) is isomorphic to the pullback
of (P ∈ X loc)/(0 ∈ A1) under F . Since X admits a Q-Gorenstein smoothing, F
is not identically zero and the locus F−1(0) ⊂ S of equisingular deformations is a
Cartier divisor. (More carefully, if S is reducible, we require that every component
of S contains smoothings, so that F is nonzero on each component.) The moduli
space MK2,χ has local analytic chart

([X] ∈MK2,χ) ' (0 ∈ S/Aut(X))

and the locus of equisingular deformations of X is identified with the divisor
D = F−1(0)/Aut(X).

If in addition H2(TX) = 0 then the morphism F is smooth (there are no
local-to-global obstructions), so S is smooth and F−1(0) ⊂ S is a smooth divisor.
Thus [X] ∈ D ⊂ MK2,χ is locally the quotient of a smooth space with smooth
divisor by a finite group.

1.2.2 Topology of Wahl degenerations

Let X/(0 ∈ A1
t ) be a one parameter Q-Gorenstein smoothing of a projective

normal surface X with a unique singularity P ∈ X of Wahl type 1
n2 (1, na − 1).

Let Y = Xt, 0 < |t| � 1 denote a nearby smooth fiber. We want to understand
the topology of the degeneration Y  X.
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The Milnor fiber of a smoothing and link of a singularity

In general, given a degeneration X/(0 ∈ A1
t ) of a smooth surface Y to a normal sur-

face X with a unique singular point P ∈ X, the change in topology is captured by
the Milnor fiber of the degeneration. This is defined as follows: Fix an embedding
(P ∈ X) ⊂ (0 ∈ Ad) for some d, and lift to an embedding (P ∈ X ) ⊂ Ad×A1

t over
A1
t . Let B ⊂ Ad be the closed ball with center the origin and radius δ � 1. The

Milnor fiber M of the smoothing (P ∈ X )/(0 ∈ A1
t ) of (P ∈ X) is the intersection

Xt ∩ B ⊂ Ad for 0 < |t| � δ. The space M is a C∞ 4-manifold with boundary
∂M (independent of the choice of embedding and δ,t). The boundary ∂M is dif-
feomorphic to the link of the singularity, that is, the intersection L = ∂B ∩X of
X with a small sphere centered at the singular point in an embedding X ⊂ Ad.

Example 1.2.2. Suppose (P ∈ X) ' (0 ∈ (f(x, y, z) = 0) ⊂ A3
x,y,z) is an isolated

hypersurface singularity. Then the versal deformation of (P ∈ X) is given by

(P ∈ X ) = (0 ∈ (f + t1g1 + · · ·+ tτgτ = 0) ⊂ A3
x,y,z × Art1,...,tτ )

where g1, . . . , gτ is a lift of a basis of the finite dimensional C-vector space

T 1 := C[[x, y, z]]

/(
f,
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

In particular, the base of the versal deformation is smooth of dimension τ =
dimC T

1. The Milnor fiber M of a smoothing of P ∈ X is homotopy equivalent
to a bouquet of µ copies of S2 [M68], where µ is the dimension of the finite
dimensional C-vector space

C[[x, y, z]]/

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

In particular M is simply connected and H2(M,Z) ' Zµ.

In general, the Milnor fiber M of the smoothing of a complex surface singu-
larity is a Stein manifold of complex dimension 2. So it has the homotopy type
of a CW complex of real dimension 2. In particular H2(M,Z) is torsion-free and
Hi(M,Z) = 0 for i > 2. The number µ := rkH2(M,Z) is called the Milnor number
of the smoothing.

In our case, recall that P ∈ X is a cyclic quotient singularity of type
1
n2 (1, na− 1). Thus the link L of P ∈ X is diffeomorphic to the lens space

L ' S3/µn2 S3 = (|u|2 + |v|2 = 1) ⊂ A2
u,v, µn2 3 ζ : (u, v) 7→ (ζu, ζna−1v).

In particular π1(L) = µn2 ' Z/n2Z.
The Milnor fiber of the Wahl degeneration can be understood as follows:

Recall that the deformation (P ∈ X )/(0 ∈ A1) is the quotient of the smoothing

(Q ∈ Z) = (0 ∈ (xy = zn + t) ⊂ A3
x,y,z × A1

t )
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of an An−1 singularity (Q ∈ Z) by the µn action with weights (1,−1, a). Note
that the µn action is free on the general fiber. Thus the Milnor fiber M of the
smoothing of (P ∈ X) is the quotient of the Milnor fiber MZ of the smoothing
of (Q ∈ Z) by a free µn action. Now MZ is homotopy equivalent to a bouquet of
n−1 copies of S2 by Example 1.2.2. In particular MZ is simply connected, so MZ

is the universal cover of M and π1(M) = µn ' Z/nZ. Also, ne(M) = e(MZ) = n,
so e(M) = 1 and H2(M,Z) = 0.

One can also give the following more precise topological description of M
[K92], 2.1. Let NZ denote the union of n copies ∆j , j ∈ Z/nZ of the closed disc

∆ = {z ∈ C | |z| ≤ 1}

with their boundaries identified. Let Z/nZ act on NZ via

Z/nZ 3 1: ∆j → ∆j+1, z 7→ ζz

where ζ is a primitive nth root of unity. Then Z/nZ acts freely on NZ ; let N denote
the quotient. Then the Milnor fiber M is homotopy equivalent to N . (More pre-
cisely, NZ is a Z/nZ-equivariant deformation retract of MZ , so N is a deformation
retract of M .)

Note for future reference that the map π1(L)→ π1(M) given by the inclusion
L = ∂M ⊂M equals the surjection

µn2 → µn, ζ 7→ ζn.

Global topology of degenerations of surfaces

Let Y  X be a degeneration of a smooth surface Y to a normal surface X with
a unique singularity P ∈ X. Let M ⊂ Y denote the Milnor fiber and L the link
of the singularity P ∈ X. Also let C = B ∩X denote the intersection of X with
a small closed ball B centered at the singular point P ∈ X in some embedding.
Then C is homeomorphic to the cone over L, in particular, C is contractible. Let
Xo ⊂ X denote the complement of the interior of C.

We have the following general result, cf. [SGA7.II], (1.3.6.1).

Lemma 1.2.3. There is a natural exact sequence

· · · → Hi(M,Z)→ Hi(Y,Z)→ H̃i(X,Z)→ Hi−1(M,Z)→ · · ·

(Here H̃i(X,Z) denotes reduced homology, that is, H̃i(X,Z) = Hi(X,Z) for i > 0
and H̃0(X,Z) = ker(H0(X,Z)→ Z) = 0.)

Proof. We have Hi(Y,M,Z) = Hi(X
o, L,Z) = Hi(X,C,Z) = H̃i(X,Z) by exci-

sion and contractibility of C. So the long exact sequence of homology for the pair
(Y,M) gives the exact sequence in the statement. �
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Corollary 1.2.4. Let Y  X be a degeneration of a smooth surface Y to a normal
surface X with a unique singularity P ∈ X of Wahl type. Then the specialization
map Hi(Y,Q) → Hi(X,Q) on homology with rational coefficients is an isomor-
phism for each i, and we have an exact sequence of integral homology

0→ H2(Y,Z)→ H2(X,Z)→ H1(M,Z)→ H1(Y,Z)→ H1(X,Z)→ 0 (1.2.1)

Moreover, the following conditions are equivalent.

(1) The map
H2(X,Z)→ H1(L,Z), α 7→ α ∩ [L]

is surjective.

(2) The specialization map

H1(Y,Z)→ H1(X,Z)

is injective.

(3) The exact sequence of Lemma 1.2.3 yields a short exact sequence

0→ H2(Y,Z)→ H2(X,Z)→ H1(M,Z)→ 0.

If H1(Y,Z) is finite of order coprime to the index n of P ∈ X, then the above
conditions are satisfied.

Proof. The Milnor fiber M is a rational homology ball, that is, Hi(M,Q) = 0 if
i > 0 and H0(M,Q) = Q. So the exact sequence of Lemma 1.2.3 with Q coeffi-
cients shows that the specialization map Hi(Y,Q)→ Hi(X,Q) is an isomorphism
for each i. The same exact sequence with Z coefficients together with the equality
H2(M,Z) = 0 gives the exact sequence of integral homology (1.2.1). The equiva-
lence of conditions (2) and (3) follows immediately.

The map H1(L,Z) → H1(M,Z) given by the inclusion L = ∂M ⊂ M is a
surjection of the form Z/n2Z→ Z/nZ. Thus the map H2(X,Z)→ H1(L,Z) of (1)
is surjective if and only if the composite map H2(X,Z)→ H1(M,Z) is surjective.
So (1) and (2) are equivalent by (1.2.1).

Finally assume H1(Y,Z) is finite of order coprime to n. Then the map
H1(M,Z) → H1(Y,Z) is the zero map (because H1(M,Z) ' Z/nZ). Now (1.2.1)
implies (2). �

1.3 Examples of degenerations of Wahl type

The simplest example of a Wahl degeneration is the family Z/(0 ∈ A1) of Exam-
ple 1.1.9 with special fiber P(1, 1, 4) and general fiber P2. Here we describe some
more complicated examples.
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Example 1.3.1. Let Y = Y10 ⊂ P(1, 1, 2, 5) be a smooth hypersurface of degree
10 in the weighted projective space P = P(1, 1, 2, 5). Let X0, X1, U, V denote the
homogeneous coordinates on P of degrees 1, 1, 2, 5. Completing the square we can
write

Y = (V 2 = F10(X0, X1, U)) ⊂ P(1, 1, 2, 5).

Thus Y is the double cover of the quadric cone Z = P(1, 1, 2) branched over a
smooth curve B = (F10 = 0) ⊂ P(1, 1, 2) of degree 10. (Note also that the cover
Y → P(1, 1, 2) is ramified over the singular point Q = (0 : 0 : 1) ∈ P(1, 1, 2).
This is an A1 singularity and the cover is locally given by the smooth cover A2 →
A2/ 1

2 (1, 1).) We have KY = OY (1) by the adjunction formula, K2
Y = 1, h1(OY ) =

0, and h2(OY ) = h0(KY ) = 2. Thus Y is a surface of general type with invariants
K2
Y = 1 and χ(OY ) = 3.

We can also describe Y as a genus 2 fibration: Note that the rational map
ϕ = ϕ|KY | defined by the linear system |KY | is the projection

ϕ : Y 99K P1, (X0 : X1 : U : V ) 7→ (X0 : X1).

Moreover |KY | has a unique basepoint P ∈ Y . Let Ỹ → Y denote the blowup
of P , with exceptional divisor E. Then ϕ lifts to a morphism ϕ̃ : Ỹ → P1 with
general fiber a smooth curve of genus 2. Moreover E defines a section of ϕ̃, and for
each smooth fiber F the point W := E ∩ F is a Weierstrass point of F (because
KF = (KỸ + F )|F = KỸ |F = (π∗KY + E)|F = (F + 2E)|F = 2W ).

Now let A ⊂ P(1, 1, 2)×A1
t be a degeneration of B with special fiber A = A0

a curve containing the singular point Q ∈ P(1, 1, 2) but otherwise general. Let
X/(0 ∈ A1

t ) be the associated degeneration of Y (the double cover with branch
locus A). Then, writing xi = Xi/U

1/2, i = 0, 1 for the orbifold coordinates at
(Q ∈ Z) ' (0 ∈ A2/ 1

2 (1, 1)) and g = g(x0, x1) for the local equation of A, we have

g(x0, x1) = ax2
0 + bx0x1 + cx2

1 + · · ·

where a, b, c ∈ C are general and · · · denotes higher order terms. By a local analytic
change of coordinates we may assume g(x0, x1) = x0x1. Let P denote the inverse
image of Q under the double cover X → P(1, 1, 2). Then

(P ∈ X) ' (0 ∈ (v2 = x0x1) ⊂ A3/ 1
2 (1, 1, 1))

where v = V/U5/2. Thus P ∈ X is a Wahl singularity of type 1
4 (1, 1). Moreover

the deformation (P ∈ X )/(0 ∈ A1
t ) is Q-Gorenstein.

One can study the surface X via its minimal resolution π : X̃ → X. Since
P ∈ X is a 1

4 (1, 1) singularity the exceptional locus of π is a (−4)-curve C and
KX̃ = π∗KX− 1

2C. Thus K2
X̃

= 0. The rational map ψ : X 99K P1 defined by |KX |
lifts to a morphism ψ̃ : X̃ → P1 which realizes X̃ as a minimal elliptic fibration
over P1. We have e(X̃) = 12χ(OX̃) = 12χ(OX) = 36 (by Noether’s formula), so

generically ψ̃ has 36 ordinary singular fibers. The exceptional (−4)-curve C ⊂ X̃
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has degree 2 over the base P1. The equisingular deformations of X (or equivalently,
the deformations of X̃ such that the (−4)-curve C deforms) define a boundary
divisor D ⊂MK2,χ for K2 = K2

Y = 1 and χ = χ(OY ) = 3.

Example 1.3.2. In this example we describe a degeneration of a smooth quintic
Y = Y5 ⊂ P3 with a 1

4 (1, 1) singularity due to Julie Rana [R13]. A related example
was described by R. Friedman [F83].

We consider a degeneration of quintic surfaces of the form

V = (AU2 + tBU + t2C = 0) ⊂ P3 × A1
t

where U is a general quadric and A,B,C are general homogeneous forms of degrees
1, 3, 5 respectively. In particular, the general fiber Y = Vt is a smooth quintic and
Q := (U = 0) ⊂ P3 is a smooth quadric, Q ' P1 × P1. Note that the special fiber
V0 = (AU2 = 0) ⊂ P3 is the union of the smooth quadric Q with multiplicity 2 and
the hyperplane H = (A = 0). We perform a birational transformation V 99K X
which is an isomorphism over A1 \ {0} such that the special fiber X = X0 is a
normal surface with a 1

4 (1, 1) singularity and the family X/A1
t is Q-Gorenstein.

Write W = P3 × A1
t and let W̃ → W denote the blowup of Q × {0} ⊂ W.

Then the special fiber of W̃ is a normal crossing divisor with components the strict
transform W ′ of the special fiber W = W0 = P3 and the exceptional divisor E.
The induced morphism W ′ → W is an isomorphism, the exceptional divisor E is
a P1-bundle over the quadric Q, and W ′ and E meet along the quadric Q ⊂ W ′

and a section of the P1-bundle E → Q. There is a birational contraction W → Z
with exceptional locus W ′, such that W ′ is contracted to a 1

2 (1, 1, 1, 1) singularity.
The family Z/A1 may be described explicitly by

Z = (U = tY ) ⊂ P(1, 1, 1, 1, 2)× A1
t

where Y is the homogeneous coordinate of degree 2 on P(1, 1, 1, 1, 2). (The con-
struction of Z/A1 here is analogous to the construction of the family with the
same name in Example 1.1.9.)

Write X̃ ⊂ W̃ and X ⊂ Z for the strict transforms of V ⊂ W. The special
fiber X̃0 is a normal crossing divisor with components the hyperplane H ⊂ W ′ '
P3 and a surface X̃ ⊂ E meeting H along the smooth conic Q ∩ H ⊂ H. The
family X/A1 may be described explicitly by

X = (AY 2 +BY + C = 0) ⊂ Z,

or equivalently

X = (U = tY, AY 2 +BY + C = 0) ⊂ P(1, 1, 1, 1, 2)× A1
t .

Let P = ((0 : 0 : 0 : 0 : 1), 0) ∈ P(1, 1, 1, 1, 2) × A1. Then, passing to the affine
chart (Y 6= 0), we have

(P ∈ X ) ' (u = t, a+ · · · = 0) ⊂ (A4
x0,...,x3

/ 1
2 (1, 1, 1, 1))× A1

t
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where xi = Xi/Y
1/2, u = U/Y , a = A/Y 1/2 and · · · denotes higher order terms.

Now since A is a general linear form and U is a general quadric it follows that the
special fiber (P ∈ X) is a 1

4 (1, 1) singularity and (P ∈ X )/A1
t is a Q-Gorenstein

smoothing. Moreover the birational morphism X̃ → X induced by W̃ → Z is the
minimal resolution of P ∈ X.

Now we study the singular surface X. We have

X = (AY 2 +BY + C = U = 0) ⊂ P(1, 1, 1, 1, 2).

So, the projection
P(1, 1, 1, 1, 2) 99K P3

defines a degree 2 rational map

ϕ : X 99K Q = (U = 0) ⊂ P3

with branch locus D ⊂ Q given by the discriminant B2 − 4AC, a smooth curve
of bidegree (6, 6) on Q ' P1 × P1. Consider the minimal resolution X̃ → X, and
let C denote the exceptional locus (a (−4)-curve). The rational map ϕ lifts to a
finite morphism

ϕ̃ : X̃ → Q.

Thus X̃ is a double cover of P1 × P1 with branch locus D of bidegree (6, 6) such
that X̃ contains a (−4)-curve C. In terms of the branch locus D, the existence of
the (−4)-curve corresponds to the existence of a smooth curve B ⊂ Q of bidegree
(1, 1) such that B is “totally tangent” to D, that is, at each intersection point of
B and D the curves meet with contact order 2. Then the inverse image of B is
the union of two (−4)-curves. These surfaces X define a boundary divisor of the
moduli space MK2,χ for K2 = K2

Y = 5, χ = χ(OY ) = 5.

Example 1.3.3. Consider the action of µ5 on P3 given by

µ5 3 ζ : (X0 : X1 : X2 : X3) 7→ (X0 : ζ1X1 : ζ2X2 : ζ3X3).

Let F be a general quintic form which is µ5-invariant and write W = (F = 0) ⊂ P3.
Then W is smooth, µ5 acts freely on W , and the quotient Y = W/µ5 is a surface
of general type with K2

Y = 1, χ(OY ) = 1, and π1(Y ) = µ5 ' Z/5Z. The surface W
is a classical Godeaux surface. Every surface of general type with K2 = 1, χ = 1,
and π1 ' Z/5Z arises in this way [R78].

Now consider a family Z/(0 ∈ A1
t ) of µ5-invariant quintics such that the

special fiber Z = Z0 passes through the fixed point Q = (1 : 0 : 0 : 0) ∈ P3 of the
µ5 action, but the family is otherwise general. Let X/(0 ∈ A1

t ) denote the quotient
of the family Z/(0 ∈ A1

t ) by the µ5 action. Let X = X0 denote the special fiber
and P ∈ X the image of the point Q ∈ Z. Passing to the affine chart (X0 6= 0) we
have

(P ∈ X) = (0 ∈ (ax2x3 + bx5
1 + · · · = 0) ⊂ A3

x1,x2,x3
/ 1

5 (1, 2, 3))
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for general a, b ∈ C, where · · · denotes the remaining monomials. After a local
analytic change of coordinates we find

(P ∈ X) ' (0 ∈ (x2x3 = x5
1) ⊂ A3

x1,x2,x3
/ 1

5 (1, 2, 3))

Also, note that the composition of the µ5 action 1
5 (1, 2, 3) with the automorphism

µ5 → µ5, ζ 7→ ζ2 gives the µ5 action 1
5 (2,−1, 1). Thus (P ∈ X) is a Wahl

singularity of type 1
25 (1, 9), and (P ∈ X )/(0 ∈ A1

t ) is a Q-Gorenstein smoothing.

One can show that the minimal resolution X̃ of X is a rational surface.
Note also that in this case the specialization map

H1(Y,Z)→ H1(X,Z)

is the zero map, so the equivalent conditions of Corollary 1.2.4 are not satisfied.
(This is the case whenever the index one cover of the singularity P ∈ X is induced
by a global covering of X which is étale over X \ {P}.)

1.4 Exceptional vector bundles associated to Wahl de-
generations

Let Y be a smooth projective surface. A vector bundle F on Y is called excep-
tional if Hom(F, F ) = C and Ext1(F, F ) = Ext2(F, F ) = 0. In particular F is
indecomposable (F does not split as a direct sum) and rigid (F has no non-trivial
deformations). Moreover, if Y/(0 ∈ S) is a deformation of Y , then F deforms in a
unique way to the nearby fibers.

Remark 1.4.1. Note that Exti(F, F ) = Hi(Hom(F, F )) (because F is a locally free
sheaf) and Hom(F, F ) contains OY as a direct summand. So a necessary condition
for the existence of exceptional bundles is H1(OY ) = H2(OY ) = 0.

Theorem 1.4.2. [H13] Let X/(0 ∈ S) be a one parameter Q-Gorenstein smoothing
of a normal projective surface X with a unique singularity P ∈ X of Wahl type
1
n2 (1, na− 1). Let Y denote a general fiber of X/(0 ∈ S). Assume that H1(OY ) =
H2(OY ) = 0 and the map

H1(Y,Z)→ H1(X,Z)

is injective.

(1) We have an exact sequence

0→ H2(Y,Z)
sp→ H2(X,Z)→ H1(M,Z)→ 0

where sp is the specialization map and M denotes the Milnor fiber of the
smoothing (so H1(M,Z) ' Z/nZ).
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(2) After a finite base change S′ → S there is a rank n reflexive sheaf E on X ′
with the following properties.

(a) F := E|Y is an exceptional bundle on Y .

(b) E := E|X is a torsion-free sheaf on X and there is an exact sequence

0→ E → L⊕n → T → 0

where L is a rank one reflexive sheaf on X and T is a torsion sheaf
supported at P .

Regarding the topological invariants of F , we have

rk(F ) = n, c1(F ) ·KY ≡ ±a mod n, and c2(F ) =
n− 1

2n
(c1(F )2 + n+ 1).

Also c1(F ) = nc1(L) ∈ H2(X,Z) is divisible by n in H2(X,Z), and c1(L) generates
the quotient H2(X,Z)/H2(Y,Z) ' Z/nZ.

If H is a ample line bundle on X over S then F is slope stable with respect
to H|Y .

Remark 1.4.3. (1) Roughly speaking, the sheaf E is a limit of the family of excep-
tional bundles F over the punctured disc S \ {0} which is slope semistable.

(2) The vector bundles obtained from F by dualizing or tensoring by a line bundle
arise in the same way from the degeneration X/(0 ∈ S).

(3) The isomorphism type of the singularity 1
n2 (1, na− 1) is determined by n and

±a mod n. (The sign ambiguity is given by interchanging the orbifold coordinates.)
Thus we can recover the type of the singularity from the vector bundle F .

Statement 1.4.2(1) is equivalent to our assumption H1(Y,Z) ⊂ H1(X,Z) by
Corollary 1.2.4. We sketch the proof of 1.4.2(2) in the case n = 2. The deformation
(P ∈ X )/(0 ∈ S) of the singularity (P ∈ X) is pulled back from the versal Q-
Gorenstein deformation

(0 ∈ (xy = z2 + t) ⊂ A3
x,y,z/

1
2 (1, 1, 1)× A1

t )→ (0 ∈ A1
t )

We give the construction for the versal case (the general case is obtained by pull
back).

The point P ∈ X is a 1
2 (1, 1, 1) singularity. So the blowup π : X̃ → X is

a resolution of X with exceptional locus W ' P2, with normal bundle NW/X̃ '
OP2(−2). The special fiber X̃0 ⊂ X̃ is a normal crossing divisor with irreducible
components the strict transform X ′ of X and the exceptional divisor W , meeting
along a smooth rational curve C. The induced morphism X ′ → X is the minimal
resolution of the 1

4 (1, 1) singularity P ∈ X with exceptional locus the curve C ⊂ X
(a (−4)-curve). The curve C ⊂W is a smooth conic in P2.
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By Corollary 1.2.4, our topological assumption H1(Y,Z) ⊂ H1(X,Z) is equiv-
alent to surjectivity of the map

H2(X,Z)→ H1(L,Z) ' Z/4Z,

where L ' S3/ 1
4 (1, 1) denotes the link of the singularity P ∈ X. This map is

identified with the restriction map

Cl(X)→ Cl(P ∈ X)

from the class group of X to the class group of the singularity (P ∈ X). (Here we
are using Hi(OX) = Hi(OY ) = 0 for i = 1, 2.) So there is an effective Weil divisor
D ⊂ X such that locally analytically at P ∈ X the divisor D is linearly equivalent
to the divisor given by the zero locus of an orbifold coordinate. Let D′ ⊂ X ′ denote
the strict transform of a general such divisor D, then D′ is Cartier and meets the
exceptional curve C transversely in a smooth point. So, writing L′ = OX′(D′) for
the associated line bundle, L′ is a line bundle on X ′ such that L′|C ' OP1(1).

Now observe that there exists an exceptional bundle G on the exceptional
divisor W ' P2 such that G|C ' OP1(1)⊕2. Indeed, we can take G ' TP2(−1).
Because X̃0 ⊂ X̃ is a normal crossing divisor, we have an exact sequence

0→ OX̃0
→ OX′ ⊕OW → OC → 0. (1.4.1)

It follows that we can glue G and (L′)⊕2 along C (by identifying their restrictions
to C) to obtain a vector bundle Ẽ on X̃0. One can check using the exact sequence
(1.4.1) that Ẽ is an exceptional vector bundle on the reducible surface X̃0. As such
it deforms to give a vector bundle Ẽ over X̃ such that the restriction F = Ẽ |Y to
the general fiber Y is an exceptional bundle. The sheaf E on X̃ in the statement
is the reflexive hull of the pushforward of Ẽ . The rank one reflexive sheaf L on X
is the reflexive hull of the pushforward of the line bundle L′, or equivalently the
sheaf OX(D) corresponding to the divisor D.

Remark 1.4.4. The construction of the vector bundle F can be viewed as an alge-
braic version of the gluing constructions used in the study of Donaldson invariants
of smooth 4-manifolds [DK90]. The surgery of smooth 4-manifolds given by pass-
ing from the minimal resolution of X to its smoothing Y is known as a rational
blowdown [FS97].

1.5 Examples

1.5.1 del Pezzo surfaces

There is a complete classification of exceptional vector bundles on del Pezzo sur-
faces [R89], [KO95]. Here we use it to show that every exceptional bundle on a del
Pezzo surface arises by the construction of Theorem 1.4.2. This is joint work with
Anna Kazanova [HK14].
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Let Y be a smooth projective surface. We say a sequence F1, . . . , FN of
exceptional bundles on Y is an exceptional collection if

Exti(Fj , Fk) = 0 for all i and all j > k.

We say the collection is full if in addition it generates the bounded derived cat-
egory D(Y ) of coherent sheaves on Y as a triangulated category. We note that
if F1, . . . , FN is a full exceptional collection then in particular the Grothendieck
group K(Y ) of coherent sheaves on Y is a free abelian group with a basis given
by the classes [F1], . . . , [FN ].

If Y is a del Pezzo surface then any exceptional collection can be extended
to a full exceptional collection. In particular, an exceptional collection F1, . . . , FN
is full if and only if N = rkK(Y ) = e(Y ), the Euler number of Y .

Theorem 1.5.1. Let X/(0 ∈ S) be a one parameter Q-Gorenstein smoothing of a
normal projective surface X with Wahl singularities P1, . . . , PN . Suppose that there
exists a nodal chain of smooth rational curves D1, . . . , DN−1 such that Di passes
through the singular points Pi, Pi+1 and is given by the zero locus of an orbifold
coordinate at each point. Let Y denote a general fiber of X/(0 ∈ S). Assume that
H1(OY ) = H2(OY ) = 0 and the map

H2(X,Z)→
r⊕
i=1

H1(Li,Z)

is surjective, where Li denotes the link of the singularity (Pi ∈ X). Then there ex-
ists an exceptional collection of bundles F1, . . . , FN on Y given by the construction
of Theorem 1.4.2 such that

c1(Fi+1)

rk(Fi+1)
− c1(Fi)

rk(Fi)
= [Di] ∈ H2(X,Z).

The proof of the theorem is based on the following elementary result.

Lemma 1.5.2. Let Y be a smooth projective surface such that H1(OY ) = H2(OY ) =
0 and D1, . . . , DN−1 a nodal chain of smooth rational curves on Y . Then the
sequence of line bundles

OY ,OY (D1), . . . ,OY (D1 + · · ·+DN−1)

is an exceptional collection.

Proof. Exercise. �

We now use Theorem 1.5.1 to reverse engineer a degeneration Y  X from
a full exceptional collection in the case Y is a del Pezzo surface. A related result
was obtained by M. Perling [P13].
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Theorem 1.5.3. Let Y be a del Pezzo surface and F1, . . . , FN a full exceptional
collection on Y . Form the vectors

ui :=
c1(Fi+1)

rk(Fi+1)
− c1(Fi)

rk(Fi)
∈ H2(Y,Q), i = 1, . . . , N − 1

and define uN by requiring

u1 + . . .+ uN = −KY .

Let M denote the kernel of the homomorphism

ZN → H2(Y,Q), ei 7→ ui

and let

ZN → L, ei 7→ vi

denote the dual of the inclusion M ⊂ ZN . Then L is a free abelian group of rank
2, and the vectors vi ∈ L are primitive and generate the rays of a complete fan Σ
in L⊗Z R in cyclic order.

Let X be the normal projective toric surface associated to Σ, L and write Di

for the toric boundary divisor corresponding to vi. Then X has Wahl singularities
and H2(TX) = 0 (so there are no local-to-global obstructions to deformations of
X).

Let X/(0 ∈ S) be a general Q-Gorenstein smoothing of X. Then the general
fiber of X/(0 ∈ S) is a smooth del Pezzo surface deformation equivalent to Y . The
construction of Theorem 1.5.1 applied to X/(0 ∈ S) and the chain D1, . . . , DN−1

of smooth rational curves on X produces an exceptional collection deformation
equivalent to the original collection F1, . . . , FN .

Any exceptional bundle on Y can be included in a full exceptional collection.
This gives the following result.

Corollary 1.5.4. Every exceptional bundle on a del Pezzo surface Y arises via the
construction of Theorem 1.4.2.

1.5.2 Godeaux surfaces

This section describes work of Anna Kazanova [K13].

A Godeaux surface Y is a minimal surface of general type such that K2
Y = 1

and χ(OY ) = 1. Such surfaces necessarily satisfy H1(OY ) = H2(OY ) = 0. More-
over H1(Y,Z) is cyclic of order n ≤ 5, and all cases occur. A complete description
of the moduli space is known for n = 3, 4, 5 [R78]. It is conjectured by Reid
and Catanese that the moduli space of Godeaux surfaces with |H1(Y,Z)| = n is
irreducible for each n.
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Theorem 1.5.5. Let Y be a Godeaux surface with |H1(Y,Z)| = n. Let Y  X be
a Wahl degeneration of Y to a normal surface X with a singularity (P ∈ X) of
type 1

4 (1, 1) such that KX is ample. (So locally trivial deformations of X define a
boundary divisor of the compactification of the moduli space of Godeaux surfaces.)

Let π : X̃ → X be the minimal resolution of X. Then X̃ is minimal of Kodaira
dimension 1 and admits an elliptic fibration X̃ → P1 with two multiple fibers. The
possible multiplicites (m1,m2) are

(m1,m2) = (4, 4), (3, 3), (2, 4), (2, 6), (2, 3); n = gcd(m1,m2).

All the possibilites for (m1,m2) occur except possibly (2, 6). This is shown
by either an explicit construction in weighted projective space or an abstract
construction as a partial Q-Gorenstein smoothing of a surface with several Wahl
singularities (cf. [LP07]).

The following result gives a complete classification of exceptional bundles F
on Godeaux surfaces Y such that rk(F ) = 2 and c1(F ) = KY modulo torsion.

Theorem 1.5.6. Let Y be a Godeaux surface, σ a torsion divisor class on Y , and
P a base point of the linear system |2KY + σ|. Then there is a unique non-trivial
extension

0→ OY → F → OY (KY + σ)⊗ IP → 0.

The sheaf F is a vector bundle of rank 2 with c1(F ) = KY modulo torsion and
c2(F ) = 1, and is slope stable with respect to KY . All such bundles are obtained
as an extension of this form tensored by a torsion line bundle.

The vector bundle F is exceptional if σ ∈ H1(Y,Z) \ 2H1(Y,Z) and P is a
simple base point.

If Y  X is a degeneration as in Theorem 1.5.5, then KX is 2-divisible in
H2(X,Z) modulo torsion if and only if (m1,m2) = (4, 4) or (2, 6). In this case the
exceptional bundle constructed by Theorem 1.4.2 is as described in Theorem 1.5.6.
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